@article{ZdziarskiBrzuszkiewiczWulltetal.2010, author = {Zdziarski, Jaroslaw and Brzuszkiewicz, Elzbieta and Wullt, Bjorn and Liesegang, Heiko and Biran, Dvora and Voigt, Birgit and Gronberg-Hernandez, Jenny and Ragnarsdottir, Bryndis and Hecker, Michael and Ron, Eliora Z. and Daniel, Rolf and Gottschalk, Gerhard and Hacker, Joerg and Svanborg, Catharina and Dobrindt, Ulrich}, title = {Host Imprints on Bacterial Genomes-Rapid, Divergent Evolution in Individual Patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68594}, year = {2010}, abstract = {Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.}, subject = {Proteomanalyse}, language = {en} } @article{FriedrichRahmannWeigeletal.2010, author = {Friedrich, Torben and Rahmann, Sven and Weigel, Wilfried and Rabsch, Wolfgang and Fruth, Angelika and Ron, Eliora and Gunzer, Florian and Dandekar, Thomas and Hacker, Joerg and Mueller, Tobias and Dobrindt, Ulrich}, title = {High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67936}, year = {2010}, abstract = {The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. Results: We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Conclusions: Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.}, subject = {Mikroarray}, language = {en} }