@article{WersebeckmannBiegerlLeyeretal.2023, author = {Wersebeckmann, Vera and Biegerl, Carolin and Leyer, Ilona and Mody, Karsten}, title = {Orthopteran diversity in steep slope vineyards: the role of vineyard type and vegetation management}, series = {Insects}, volume = {14}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects14010083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304891}, year = {2023}, abstract = {The abandonment of traditional agricultural practices and subsequent succession are major threats to many open-adapted species and species-rich ecosystems. Viticulture on steep slopes has recently suffered from strong declines due to insufficient profitability, thus increasing the area of fallow land considerably. Changing cultivation systems from vertically oriented to modern vineyard terraces offers an opportunity to maintain management economically viable and thus reduces further abandonment. Hillside parallel terraces favor mechanization, and their embankments offer large undisturbed areas that could provide valuable habitats. We investigated the effects of vineyard abandonment, different vineyard management types (vertically oriented vs. terraced), and local parameters on Orthoptera diversity in 45 study sites along the Upper Middle Rhine Valley in Germany. Our results show that woody structures and vineyard abandonment reduced Orthoptera diversity at the local and landscape scale due to decreased habitat quality, especially for open-adapted species. In contrast, open inter-rows of actively managed vineyard types supported heat-adapted Caelifera species. On terrace embankments, extensive management and taller vegetation benefited Ensifera species, while short and mulched vegetation in vertically oriented vineyards favored the dominance of one single Caelifera species. Our results highlight the significance of maintaining viticultural management on steep slopes for the preservation of both open-adapted Orthoptera species and the cultural landscape.}, language = {en} } @article{KleijnWinfreeBartomeusetal.2015, author = {Kleijn, David and Winfree, Rachael and Bartomeus, Ignasi and Carvalheiro, Lu{\´i}sa G. and Henry, Mickael and Isaacs, Rufus and Klein, Alexandra-Maria and Kremen, Claire and M'Gonigle, Leithen K. and Rader, Romina and Ricketts, Taylor H. and Williams, Neal M. and Adamson, Nancy Lee and Ascher, John S. and B{\´a}ldi, Andr{\´a}s and Bat{\´a}ry, P{\´e}ter and Benjamin, Faye and Biesmeijer, Jacobus C. and Blitzer, Eleanor J. and Bommarco, Riccardo and Brand, Mariette R. and Bretagnolle, Vincent and Button, Lindsey and Cariveau, Daniel P. and Chifflet, R{\´e}my and Colville, Jonathan F. and Danforth, Bryan N. and Elle, Elizabeth and Garratt, Michael P. D. and Herzog, Felix and Holzschuh, Andrea and Howlett, Brad G. and Jauker, Frank and Jha, Shalene and Knop, Eva and Krewenka, Kristin M. and Le F{\´e}on, Violette and Mandelik, Yael and May, Emily A. and Park, Mia G. and Pisanty, Gideon and Reemer, Menno and Riedinger, Verena and Rollin, Orianne and Rundl{\"o}f, Maj and Sardi{\~n}as, Hillary S. and Scheper, Jeroen and Sciligo, Amber R. and Smith, Henrik G. and Steffan-Dewenter, Ingolf and Thorp, Robbin and Tscharntke, Teja and Verhulst, Jort and Viana, Blandina F. and Vaissi{\`e}re, Bernard E. and Veldtman, Ruan and Ward, Kimiora L. and Westphal, Catrin and Potts, Simon G.}, title = {Delivery of crop pollination services is an insufficient argument for wild pollinator conservation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7414}, doi = {10.1038/ncomms8414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151879}, year = {2015}, abstract = {There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.}, language = {en} }