@article{OervoessyKoroesiBataryetal.2014, author = {Oervoessy, Noemi and Koroesi, Adam and Batary, Peter and Vozar, Agnes and Peregovits, Laszlo}, title = {Habitat Requirements of the Protected Southern Festoon (Zerynthia Polysena); Adult, Egg and Larval Distribution in a Highly Degraded Habitat Complex}, series = {Acta Zoologica Academiae Scientiarum Hungaricae}, volume = {60}, journal = {Acta Zoologica Academiae Scientiarum Hungaricae}, number = {4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117810}, pages = {371-387}, year = {2014}, abstract = {Habitat quality affects the presence and size of butterfly populations. Resources for all life stages must be found in a given or few habitat patches. Southern festoon (Zerynthia polyxena) is a vulnerable, but locally abundant species in Hungary. The larva requires birthwort (Aristolochia clematitis) as food plant. We examined the small scale habitat use of adults and distribution of eggs and larvae among different vegetation types to reveal the requirements of the species in all life stages. Transect counts were conducted in a tree plantation complex comprising four types of vegetation. Number (+/- SE) of adults, eggs and larvae were lowest in poplar plantation (adult 0.3 +/- 0.2, egg 1.1 +/- 1.1, larva 0.6 +/- 0.3). Medium amount of butterflies were observed in open (adult 8.3 +/- 2.9, egg 3.1 +/- 2.6, larva 3.1 +/- 1.9) and black-locust (adult 9.4 +/- 4.2, egg 12.7 +/- 4.9, larva 4.1 +/- 1.1) habitat. Number of butterflies was highest in hummocks (adult 13.5 +/- 1.5, egg 12.9 +/- 5.7, larva 8.4 +/- 2.1). Adults avoided bare ground. We encountered most eggs in dense food plant patches with high plants. Food plant height also positively influenced the occurrence of the larvae. Although distribution of adults and juvenile forms showed quite similar patterns, we could also reveal some differences that caused by different environmental conditions in distinct vegetation types. Our study stresses the importance of habitat quality, which affects population size of butterflies even in a highly degraded habitat complex.}, language = {en} } @article{NguyenBeetzMerlinetal.2022, author = {Nguyen, Tu Anh Thi and Beetz, M. Jerome and Merlin, Christine and Pfeiffer, Keram and el Jundi, Basil}, title = {Weighting of celestial and terrestrial cues in the monarch butterfly central complex}, series = {Frontiers in Neural Circuits}, volume = {16}, journal = {Frontiers in Neural Circuits}, issn = {1662-5110}, doi = {10.3389/fncir.2022.862279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279445}, year = {2022}, abstract = {Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.}, language = {en} }