@article{PeterBultinckMyantetal.2014, author = {Peter, Stefanie and Bultinck, Jennyfer and Myant, Kevin and Jaenicke, Laura A. and Walz, Susanne and M{\"u}ller, Judith and Gmachl, Michael and Treu, Matthias and Boehmelt, Guido and Ade, Casten P. and Schmitz, Werner and Wiegering, Armin and Otto, Christoph and Popov, Nikita and Sansom, Owen and Kraut, Norbert and Eilers, Martin}, title = {H Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase}, series = {EMBO Molecular Medicine}, volume = {6}, journal = {EMBO Molecular Medicine}, number = {12}, issn = {1757-4684}, doi = {10.15252/emmm.201403927}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118132}, pages = {1525-41}, year = {2014}, abstract = {Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells.}, language = {en} } @article{SarukhanyanShityakovDandekar2018, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {In silico designed Axl receptor blocking drug candidates against Zika virus infection}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {5}, doi = {10.1021/acsomega.8b00223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176739}, pages = {5281-5290}, year = {2018}, abstract = {After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies.}, language = {en} }