@article{BaluapuriHofstetterDudvarskiStankovicetal.2019, author = {Baluapuri, Apoorva and Hofstetter, Julia and Dudvarski Stankovic, Nevenka and Endres, Theresa and Bhandare, Pranjali and Vos, Seychelle Monique and Adhikari, Bikash and Schwarz, Jessica Denise and Narain, Ashwin and Vogt, Markus and Wang, Shuang-Yan and D{\"u}ster, Robert and Jung, Lisa Anna and Vanselow, Jens Thorsten and Wiegering, Armin and Geyer, Matthias and Maric, Hans Michael and Gallant, Peter and Walz, Susanne and Schlosser, Andreas and Cramer, Patrick and Eilers, Martin and Wolf, Elmar}, title = {MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation}, series = {Molecular Cell}, volume = {74}, journal = {Molecular Cell}, doi = {10.1016/j.molcel.2019.02.031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221438}, pages = {674-687}, year = {2019}, abstract = {The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} }