@phdthesis{Franke2019, author = {Franke, Christian}, title = {Advancing Single-Molecule Localization Microscopy: Quantitative Analyses and Photometric Three-Dimensional Imaging}, doi = {10.25972/OPUS-15635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156355}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Since its first experimental implementation in 2005, single-molecule localization microscopy (SMLM) emerged as a versatile and powerful imaging tool for biological structures with nanometer resolution. By now, SMLM has compiled an extensive track-record of novel insights in sub- and inter- cellular organization.\\ Moreover, since all SMLM techniques rely on the analysis of emission patterns from isolated fluorophores, they inherently allocate molecular information \$per\$ \$definitionem\$.\\ Consequently, SMLM transitioned from its origin as pure high-resolution imaging instrument towards quantitative microscopy, where the key information medium is no longer the highly resolved image itself, but the raw localization data set.\\ The work presented in this thesis is part of the ongoing effort to translate those \$per\$ \$se\$ molecular information gained by SMLM imaging to insights into the structural organization of the targeted protein or even beyond. Although largely consistent in their objectives, the general distinction between global or segmentation clustering approaches on one side and particle averaging or meta-analyses techniques on the other is usually made.\\ During the course of my thesis, I designed, implemented and employed numerous quantitative approaches with varying degrees of complexity and fields of application.\\ \\ In my first major project, I analyzed the localization distribution of the integral protein gp210 of the nuclear pore complex (NPC) with an iterative \textit{k}-means algorithm. Relating the distinct localization statistics of separated gp210 domains to isolated fluorescent signals led, among others, to the conclusion that the anchoring ring of the NPC consists of 8 homo-dimers of gp210.\\ This is of particular significance, both because it answered a decades long standing question about the nature of the gp210 ring and it showcased the possibility to gain structural information well beyond the resolution capabilities of SMLM by crafty quantification approaches.\\ \\ The second major project reported comprises an extensive study of the synaptonemal complex (SNC) and linked cohesin complexes. Here, I employed a multi-level meta-analysis of the localization sets of various SNC proteins to facilitate the compilation of a novel model of the molecular organization of the major SNC components with so far unmatched extend and detail with isotropic three-dimensional resolution.\\ In a second venture, the two murine cohesin components SMC3 and STAG3 connected to the SNC were analyzed. Applying an adapted algorithm, considering the disperse nature of cohesins, led to the realization that there is an apparent polarization of those cohesin complexes in the SNC, as well as a possible sub-structure of STAG3 beyond the resolution capabilities of SMLM.\\ \\ Other minor projects connected to localization quantification included the study of plasma membrane glycans regarding their overall localization distribution and particular homogeneity as well as the investigation of two flotillin proteins in the membrane of bacteria, forming clusters of distinct shapes and sizes.\\ \\ Finally, a novel approach to three-dimensional SMLM is presented, employing the precise quantification of single molecule emitter intensities. This method, named TRABI, relies on the principles of aperture photometry which were improved for SMLM.\\ With TRABI it was shown, that widely used Gaussian fitting based localization software underestimates photon counts significantly. This mismatch was utilized as a \$z\$-dependent parameter, enabling the conversion of 2D SMLM data to a virtual 3D space. Furthermore it was demonstrated, that TRABI can be combined beneficially with a multi-plane detection scheme, resulting in superior performance regarding axial localization precision and resolution.\\ Additionally, TRABI has been subsequently employed to photometrically characterize a novel dye for SMLM, revealing superior photo-physical properties at the single-molecule level.\\ Following the conclusion of this thesis, the TRABI method and its applications remains subject of diverse ongoing research.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @phdthesis{Waeldchen2020, author = {W{\"a}ldchen, Sina}, title = {Super-Resolution-Mikroskopie zur Visualisierung und Quantifizierung von Glutamatrezeptoren und ADHS-assoziierten Proteinen}, doi = {10.25972/OPUS-19283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Entwicklung hochaufl{\"o}sender Fluoreszenzmikroskopiemethoden hat die Lichtmikroskopie revolutioniert. Einerseits erm{\"o}glicht die h{\"o}here erzielte r{\"a}umliche Aufl{\"o}sung die Abbildung von Strukturen, die deutlich unterhalb der beugungsbedingten Aufl{\"o}sungsgrenze liegen. Andererseits erh{\"a}lt man durch Einzelmolek{\"u}llokalisationsmikroskopiemethoden wie dSTORM (Direct Stochastic Optical Reconstruction Microscopy) Informationen, welche man f{\"u}r quantitative Analysen heranziehen kann. Aufgrund der sich dadurch bietenden neuen M{\"o}glichkeiten, hat sich die hochaufl{\"o}sende Fluoreszenzmikroskopie rasant entwickelt und kommt mittlerweile zur Untersuchung einer Vielzahl biologischer und medizinischer Fragestellungen zum Einsatz. Trotz dieses Erfolgs ist jedoch nicht zu verleugnen, dass auch diese neuen Methoden ihre Nachteile haben. Dazu z{\"a}hlt die Notwendigkeit relativ hoher Laserleistungen, welche Voraussetzung f{\"u}r hohe Aufl{\"o}sung ist und bei lebenden Proben zur Photosch{\"a}digung f{\"u}hren kann. Diese Arbeit widmet sich sowohl dem Thema der Photosch{\"a}digung durch Einzelmolek{\"u}llokalisationsmikroskopie, als auch der Anwendung von dSTORM und SIM (Structured Illumination Microscopy) zur Untersuchung neurobiologischer Fragestellungen auf Proteinebene. Zur Ermittlung der Photosch{\"a}digung wurden lebende Zellen unter typischen Bedingungen bestrahlt und anschließend f{\"u}r 20-24 h beobachtet. Als quantitatives Maß f{\"u}r den Grad der Photosch{\"a}digung wurde der Anteil sterbender Zellen bestimmt. Neben der zu erwartenden Intensit{\"a}ts- und Wellenl{\"a}ngenabh{\"a}ngigkeit, zeigte sich, dass die Schwere der Photosch{\"a}digung auch von vielen weiteren Faktoren abh{\"a}ngt und dass sich Einzelmolek{\"u}llokalisationsmikroskopie bei Ber{\"u}cksichtigung der gewonnenen Erkenntnisse durchaus mit Lebendzellexperimenten vereinbaren l{\"a}sst. Ein weiteres Projekt diente der Untersuchung der A- und B-Typ-Glutamatrezeptoren an der neuromuskul{\"a}ren Synapse von Drosophila melanogaster mittels dSTORM. Dabei konnte eine ver{\"a}nderte Anordnung beider Rezeptortypen infolge synaptischer Plastizit{\"a}t beobachtet, sowie eine absolute Quantifizierung des A-Typ-Rezeptors durchgef{\"u}hrt werden. Im Mittelpunkt eines dritten Projekts standen Cadherin-13 (CDH13) sowie der Glucosetransporter Typ 3 (GluT3), welche beide mit der Aufmerksamkeitsdefizit-Hyperaktivit{\"a}tsst{\"o}rung in Verbindung gebracht werden. CDH13 konnte mittels SIM in serotonergen Neuronen, sowie radi{\"a}ren Gliazellen der dorsalen Raphekerne des embryonalen Mausgehirns nachgewiesen werden. Die Rolle von GluT3 wurde in aus induzierten pluripotenten Stammzellen differenzierten Neuronen analysiert, welche verschiedene Kopienzahlvariation des f{\"u}r GluT3-codierenden SLC2A3-Gens aufwiesen. Die Proteine GluT3, Bassoon und Homer wurden mittels dSTORM relativ quantifiziert. W{\"a}hrend die Deletion des Gens zu einer erwartenden Verminderung von GluT3 auf Proteinebene f{\"u}hrte, hatte die Duplikation keinen Effekt auf die GluT3-Menge. F{\"u}r Bassoon und Homer zeigte sich weder durch die Deletion noch die Duplikation eine signifikante Ver{\"a}nderung.}, subject = {Mikroskopie}, language = {de} }