@phdthesis{Heidrich2021, author = {Heidrich, Lea}, title = {The effect of environmental heterogeneity on communities}, doi = {10.25972/OPUS-22178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221781}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {How diversity of life is generated, maintained, and distributed across space and time is the central question of community ecology. Communities are shaped by three assembly processes: (I) dispersal, (II) environ-mental, and (III) interaction filtering. Heterogeneity in environmental conditions can alter these filtering processes, as it increases the available niche space, spatially partitions the resources, but also reduces the effective area available for individual species. Ultimately, heterogeneity thus shapes diversity. However, it is still unclear under which conditions heterogeneity has positive effects on diversity and under which condi-tions it has negative or no effects at all. In my thesis, I investigate how environmental heterogeneity affects the assembly and diversity of diverse species groups and whether these effects are mediated by species traits. In Chapter II, I first examine how much functional traits might inform about environmental filtering pro-cesses. Specifically, I examine to which extent body size and colour lightness, both of which are thought to reflect the species thermal preference, shape the distribution and abundance of two moth families along elevation. The results show, that assemblages of noctuid moths are more strongly driven by abiotic filters (elevation) and thus form distinct patterns in colour lightness and body size, while geometrid moths are driven by biotic filters (habitat availability), and show no decline in body size nor colour lightness along elevation. Thus, one and the same functional trait can have quite different effects on community assembly even between closely related taxonomic groups. In Chapter III, I elucidate how traits shift the relative importance of dispersal and environmental filtering in determining beta diversity between forests. Environmental filtering via forest heterogeneity had on aver-age higher independent effects than dispersal filtering within and among regions, suggesting that forest heterogeneity determines species turnover even at country-wide extents. However, the relative importance of dispersal filtering increased with decreasing dispersal ability of the species group. From the aspects of forest heterogeneity covered, variations in herb or tree species composition had overall stronger influence on the turnover of species than forest physiognomy. Again, this ratio was influenced by species traits, namely trophic position, and body size, which highlights the importance of ecological properties of a taxo-nomic group in community assembly. In Chapter IV, I assess whether such ecological properties ultimately determine the level of heterogeneity which maximizes species richness. Here, I considered several facets of heterogeneity in forests. Though the single facets of heterogeneity affected diverse species groups both in positive and negative ways, we could not identify any generalizable mechanism based on dispersal nor the trophic position of the species group which would dissolve these complex relationships. In Chapter V, I examine the effect of environmental heterogeneity of the diversity of traits itself to evalu-ate, whether the effects of environmental heterogeneity on species richness are truly based on increases in the number of niches. The results revealed that positive effects of heterogeneity on species richness are not necessarily based on an increased number of niches alone, but proposedly also on a spatially partition of resources or sheltering effects. While ecological diversity increased overall, there were also negative trends which indicate filtering effects via heterogeneity. In Chapter VI, I present novel methods in measuring plot-wise heterogeneity of forests across continental scales via Satellites. The study compares the performance of Sentinel-1 and LiDar-derived measurements in depicting forest structures and heterogeneity and to their predictive power in modelling diversity. Senti-nel-1 could match the performance of Lidar and shows high potential to assess free yet detailed infor-mation about forest structures in temporal resolutions for modelling the diversity of species. Overall, my thesis supports the notion that heterogeneity in environmental conditions is an important driv-er of beta-diversity, species richness, and ecological diversity. However, I could not identify any general-izable mechanism which direction and form this effect will have.}, subject = {Heterogenit{\"a}t}, language = {en} } @phdthesis{Kohl2023, author = {Kohl, Patrick Laurenz}, title = {The buzz beyond the beehive: population demography, parasite burden and limiting factors of wild-living honeybee colonies in Germany}, doi = {10.25972/OPUS-33032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330327}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The western honeybee (Apis mellifera) is widely known as the honey producer and pollinator managed by beekeepers but neglected as a wild bee species. Central European honeybee populations have been anthropogenically disturbed since about 1850 through introgression and moderate artificial selection but have never been truly domesticated due to a lack of mating control. While their decline in the wild was historically attributed to the scarcity of nesting cavities, a contemporary view considers the invasion of the parasitic mite Varroa destructor in the 1970s as the major driver. However, there are no longitudinal population data available that could substantiate either claim. Based on the insight that introduced European honeybees form viable wild populations in eastern North America and reports on the occurrence of wild-living colonies from various European countries, we systematically studied the ecology of wild-living honeybees in Germany. First, we investigated whether wild-living honeybees colonising German forests form a self-sustaining population. Second, we asked how the parasite burden of wild-living colonies relates to that of managed colonies. And third, we explored whether the winter mortality of wild-living colonies is associated with parasite burden, nest depredation, or the lack of resources on the landscape scale. Between 2017 and 2021, we monitored listed trees with black woodpecker cavities for honeybees in the managed forests of three study regions (Swabian Alb, counties Coburg and Lichtenfels, county Weilheim-Schongau). Continuity of occupation was determined using microsatellite genetic markers. Wild-living colonies predictably colonised forests in summer, when about 10\% of all cavities were occupied. The annual colony survival rate and colony lifespan (based on N=112 colonies) were 10.6\% and 0.6 years, with 90\% of colonies surviving summer (July-September), 16\% surviving winter (September-April), and 72\% surviving spring (April-July). The average maximum and minimum colony densities were 0.23 (July) and 0.02 (April) colonies per km^2. During the (re-)colonisation of forests in spring, swarms preferred cavities that had already been occupied by other honeybee colonies. We estimate the net reproductive rate of the population to be R0= 0.318, meaning that it is currently not self-sustaining but maintained by the annual immigration of swarms from managed hives. The wild-living colonies are feral in a behavioural sense. We compared the occurrence of 18 microparasites among feral colonies (N=64) and managed colonies (N=74) using qPCR. Samples were collected in four regions (the three regions mentioned above and the city of Munich) in July 2020; they consisted of 20 workers per colony captured at flight entrances. We distinguished five colony types representing differences in colony age and management histories. Besides strong regional variation, feral colonies consistently hosted fewer microparasite taxa (median: 5, range 1-8) than managed colonies (median: 6, range 4-9) and had different parasite communities. Microparasites that were notably less prevalent among feral colonies were Trypanosomatidae, Chronic bee paralysis virus, and Deformed wing viruses A and B. In the comparison of five colony types, parasite burden was lowest in newly founded feral colonies, intermediate in overwintered feral colonies and managed nucleus colonies, and highest in overwintered managed colonies and hived swarms. This suggests that the natural mode of colony reproduction by swarming, which creates pauses in brood production, and well-dispersed nests, which reduce horizontal transmission, explain the reduced parasite burden in feral compared to managed colonies. To explore the roles of three potential drivers of feral colony winter mortality, we combined colony observations gathered during the monitoring study with data on colony-level parasite burden, observations and experiments on nest depredation, and landscape analyses. There was no evidence for an effect of summertime parasite burden on subsequent winter mortality: colonies that died (N=57) did not have a higher parasite burden than colonies that survived (N=10). Camera traps (N=15) installed on cavity trees revealed that honeybee nests are visited by a range of vertebrate species throughout the winter at rates of up to 10 visits per week. Four woodpecker species, great tits, and pine martens acted as true nest depredators. The winter survival rate of colonies whose nest entrances were protected by screens of wire mesh (N=32) was 50\% higher than that of colonies with unmanipulated entrances (N=40). Analyses of land cover maps revealed that the landscapes surrounding surviving colonies (N=19) contained on average 6.4 percentage points more resource-rich cropland than landscapes surrounding dying colonies (N=94). We estimate that tens of thousands of swarms escape from apiaries each year to occupy black woodpecker cavities and other hollow spaces in Germany and that feral colonies make up about 5\% of the regional honeybee populations. They are unlikely to contribute disproportionately to the spread of bee diseases. Instead, by spatially complementing managed colonies, they contribute to the pollination of wild plants in forests. Honeybees occupying tree cavities likely have various effects on forest communities by acting as nest site competitors or prey, and by accumulating biomass in tree holes. Nest depredation (a consequence of a lack of well-protected nest sites) and food resource limitation seem to be more important than parasites in hampering feral colony survival. The outstanding question is how environmental and intrinsic factors interact in preventing population establishment. Nest boxes with movable frames could be used to better study the environmental drivers of feral colonies' mortality. Pairs of wild (self-sustaining) and managed populations known to exist outside Europe could provide answers to whether modern apiculture creates honeybee populations maladapted to life in the wild. In Europe, large continuous forests might represent evolutionary refuges for wild honeybees.}, subject = {Biene }, language = {en} } @phdthesis{Wende2014, author = {Wende, Beate}, title = {Diversity of saproxylic beetles and host tree specialisation in differently managed forests across Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Chapter I The gradual turnover of dead organic material into mineral nutrients is a key ecological function, linking decomposition and primary production, the essential parts of the nutrient-energy cycle. However, disturbances in terms of species or resource losses might impair the equilibrium between production and decomposition. Humanity has converted large proportions of natural landscapes and intensified land-use activity for food production. Globally, only very few areas are totally unaffected by human activity today. To ensure the maintenance of both essential ecosystem services, knowledge about the interplay of biodiversity and ecosystem functioning as well as effects of intensified management on both is crucial. The vast majority of terrestrial biomass production as well as decomposition take place in forest ecosystems. Though forestry has a long sustainable history in Europe, its intensification during the last century has caused severe impacts on forest features and, consequently, on the associated biota, especially deadwood dependent organisms. Among these, saproxylic beetles are the most diverse group in terms of species numbers and functional diversity, but also most endangered due to habitat loss. These features classify them as ideal research organisms to study effects of intensified forestry on ecosystem services. The BELONGDEAD project located in Germany aimed to investigate deadwood decay and functional consequences of diversity changes in the associated fauna on the decomposition process from the initialisation of deadwood decay to complete degradation. As part of the BeLongDead project, this dissertation focussed on saproxylic beetle species, thereby evaluating (1) regionally effects of tree species identity of fresh deadwood and (2) forest management of varying intensities on the diversity, abundance and community composition of saproxylic beetles (chapter II); (3) the specialisation degree of different trophic guilds of saproxylic beetles, and thus the stability and robustness of their interaction networks against disturbances (chapter III); (4) the impact of environmental features of local to regional spatial scales on species richness of saproxylic beetles differing in their habitat niche in terms of deadwood decay stages (chapter IV). Chapter II The vast majority of European forest ecosystems have been anthropogenically affected, leaving less than 1\% of the about 1 milliard hectare as natural forests. A long history of forestry and especially the technological progress during the last century have caused massive habitat fragmentation as well as substantial loss of essential resources in European forest ecosystems. Due to this, the substrate-dependent group of saproxylic beetles has experienced severe species losses. Thus, investigations concerning saproxylic diversity and deadwood volume were badly needed. However, the importance of different deadwood in terms of tree species identity for the colonization by saproxylic beetles under different local and regional management regimes is poorly understood. Therefore, we studied possible regional differences in colonization patterns of saproxylic beetle species in a total of 688 fresh deadwood logs of 13 tree species in 9 sites of managed conifer and beech forests, and unmanaged beech forests, respectively. We found that tree species identity was an important driver in determining saproxylic species composition and abundance within fresh deadwood. However, saproxylic species showed different colonization patterns of deadwood items of the same tree species among the study regions. Regionally consistent, conifer forests were most diverse. We attribute the latter result to the historically adaption of saproxylic beetle species to semi-open forests, which conditions are actually best reflected by conifer forests. To preserve a diverse local species pool of early successional saproxylic beetles, we suggest an equal high degree of deadwood diversity in a tree species context in due consideration of regional differences. Chapter III The extinction risk of a particular species corresponds with its species-specific requirements on resources and habitat conditions, in other words with the width of the species` ecological niche. Species with a narrow ecological niche are defined as specialists. Members of this group experience higher extinction risk by resource limitation than generalists, which are able to utilize a variety of resources. For the classification of species as specialists or generalists, thus evaluating possible extinction risks, ecologists use the concept of interaction networks. This method has often been applied for mutualistic or antagonistic plant-animal interactions, but information for networks of detritivores is scarce. Therefore, saproxylic beetle species sampled as described in chapter II were categorised according to their larval diet; additionally their interaction networks (N=108) with 13 dead host tree species were analysed. Specialisation degree was highest for wood-digesting beetles and decreased with increasing trophic level. Also the network indices evaluating robustness and generality indicated a higher susceptibility to species extinctions for xylophagous than for mycetophagous and predatory beetles. The specialisation of xylophagous species on specific tree species might be an adaption to tree species specific ingredients stored for defence against pathogens and pests. However, we conclude that the high specialisation degree of xylophages and thus their higher extinction risk by resource loss harbours certain dangers for ecosystem function and stability as species diversity is positively linked to both. Chapter IV Populations depend on individual emigration and immigration events to ensure genetic exchange. For successful migration it is of utmost importance that spatially separated populations are obtainable by specimen. Migratory success depends on the one hand on the species dispersal abilities and on the other on the availability of suitable habitats in the surrounding landscape in which the distinct host populations exist. However, consequences of intensive forest management correspond not only to severe reduction of local deadwood amount, but, among others, also a change in tree species composition and high levels of fragmentation in the surrounding forest area. Saproxylic beetle species differ in their dispersal behaviour according to the temporal availability of their preferred habitat. Generally, early successional saproxylic beetles are able to disperse over large distances, whereas beetles inhabiting advanced decayed wood often remain close to their larval habitat. Due to this, environmental factors might affect saproxylic beetle guilds differently. We classified the saproxylic beetles sampled as described in chapter II according to their calculated habitat niche as early, intermediate or late successional saproxylic beetles. For the different guilds the effects of 14 environmental factors on different spatial scales (stand factors at 0.1 km radius, landscape composition at 2 km radius, and regionally differing abiotic factors in 400 km to 700 km distance) were investigated. Consistently for all guilds, species richness decreased with fragmentation at local and landscape scale, and increased in warmer climate. However, we found contradictory results between the guilds to some extent. We relate this to guild specific habitat requirements of the saproxylic beetles. Therefore, for the development of appropriate conservation practices guild-specific requirements saproxylic beetles have to be considered not only locally but on larger spatial scales. Chapter V In conclusion, this dissertation identified main drivers of early successional saproxylic beetle species richness on various spatial scales. Our results emphasize the importance to develop management schemes meeting species-specific and guild-specific habitat requirements of the saproxylic beetle fauna at relevant spatial and temporal scales. Therefore, short-term actions suggested for sustainable forest management should be the focus on a diverse tree species composition consisting of indigenous tree species with respect to regional differences. Moreover, senescent trees, fallen and standing deadwood should remain in the forests, and some tree individuals should be allowed to grow old. Long-term actions should involve the reduction of forest fragmentation and the connection of spatial widely separated forest fragments. Furthermore, to fully understand the effects of forest management long-term research should be conducted to compare habitat requirements of intermediate and late successional beetles with the results presented in this dissertation.}, subject = {Saproxylophage}, language = {en} }