@phdthesis{Aso2010, author = {Aso, Yoshinori}, title = {Dissecting the neuronal circuit for olfactory learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, "General introduction and discussion" section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila.}, subject = {Taufliege}, language = {en} } @phdthesis{Groh2005, author = {Groh, Claudia}, title = {Environmental influences on the development of the female honeybee brain Apis mellifera}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {F{\"u}r die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einfl{\"u}ssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem f{\"u}r diese Studie, um die Entwicklung und Funktion neuronaler Plastizit{\"a}t im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen K{\"o}niginnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizit{\"a}t. Diploide Eier, aus denen sich K{\"o}niginnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich K{\"o}niginnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago gr{\"o}ßer, leben wesentlich l{\"a}nger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale F{\"u}tterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen {\"u}ber eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. M{\"o}gliche neuronale Korrelate f{\"u}r altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf prim{\"a}re (Antennalloben) und sekund{\"a}re (Pilzk{\"o}rper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzf{\"a}rbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgef{\"u}hrt. Diese Doppelmarkierung erm{\"o}glichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzk{\"o}rper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird w{\"a}hrend der Entwicklung in Wachstumskegeln und in adulten Gehirnen in pr{\"a}synaptischen Endigungen und dendritischen Dornen exprimiert. Pr{\"a}synaptische Elemente wurden durch den Einsatz eines spezifischen Antik{\"o}rpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte r{\"a}umliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Pr{\"a}parate realisiert. Anhand dieser Methodik konnten erstmals {\"u}ber reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizit{\"a}t im Pilzk{\"o}rper-Calyx durchgef{\"u}hrt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizit{\"a}t des Gehirns der Honigbiene. Entsprechend der k{\"u}rzeren Puppenphase der K{\"o}niginnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage fr{\"u}her aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzk{\"o}rper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei K{\"o}niginnen. Diese neuronale Strukturplastizit{\"a}t auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse {\"u}ber den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, w{\"a}hrend der Puppenphase auf die synaptische Organisation der adulten Pilzk{\"o}rper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei K{\"o}niginnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizit{\"a}t zeigt diese Studie eine starke altersbedingte Strukturplastizit{\"a}t der MG w{\"a}hrend der relativ langen Lebensdauer von Bienenk{\"o}niginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55\%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33\%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizit{\"a}t sowie altersbedingte synaptische Strukturplastizit{\"a}t in den sensorischen Eingangsregionen der Pilzk{\"o}rper-Calyces k{\"o}nnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen.}, subject = {Biene}, language = {en} } @phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} } @phdthesis{Stieb2011, author = {Stieb, Sara Mae}, title = {Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85584}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {W{\"u}stenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabh{\"a}ngiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gel{\"a}nde bis zu mehrere hundert Meter weite Distanzen zur{\"u}ckgelegt haben, k{\"o}nnen sie pr{\"a}zise zu ihrer oft unauff{\"a}lligen Nest{\"o}ffnung zur{\"u}ckzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollst{\"a}ndig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilit{\"a}t aufweist, welche mit sich drastisch {\"a}ndernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizit{\"a}t visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische {\"A}nderungen in den Pilzk{\"o}rpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische {\"A}nderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) - einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizit{\"a}t der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer F{\"a}rbungen die pr{\"a}- und postsynaptischen Profile klar ausgepr{\"a}gter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche w{\"a}hrend des {\"U}bergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersm{\"a}ßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizit{\"a}t in der Kragenregion der PK-Kelche haupts{\"a}chlich durch visuelle Erfahrungen ausgel{\"o}st wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizit{\"a}t. Dies deutet darauf hin, dass das System {\"u}ber die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zur{\"u}ckgef{\"u}hrt, um zu untersuchen, ob die lichtausgel{\"o}ste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zur{\"u}ckf{\"u}hrung widerspiegelnde Plastizit{\"a}tsauspr{\"a}gungen, besonders eine {\"A}nderung der pr{\"a}synaptischen Synapsinexprimierung. Mithilfe immunozytochemischer F{\"a}rbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die pr{\"a}- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle {\"A}nderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Forts{\"a}tzen bestehen, welche umringt sind von einem pr{\"a}synaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltens{\"u}bergang wird von einer Zunahme an synaptischen Komplexen um ~13\% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kr{\"a}ftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signal{\"u}bertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enth{\"u}llen, dass die Ameisen, bevor sie mit ihrer Fouragiert{\"a}tigkeit anfangen, bis zu zwei Tage lang in unmittelbarer N{\"a}he des Nestes Entdeckungsl{\"a}ufe unternehmen, welche Pirouetten {\"a}hnliche Drehungen beinhalten. W{\"a}hrend dieser Entdeckungsl{\"a}ufe sammeln die Ameisen Lichterfahrung und assoziieren m{\"o}glicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Dar{\"u}ber hinaus k{\"o}nnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivit{\"a}t der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Ver{\"a}nderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizit{\"a}t und dem Verhaltens{\"u}bergang von der Innendienst- zur Fouragierphase bestehen k{\"o}nnte. Cataglyphis besitzen hervorragende visuelle Navigationsf{\"a}higkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzusp{\"u}ren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der prim{\"a}ren olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Gr{\"o}ße und r{\"a}umliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergr{\"o}ßerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis M{\"a}nnchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und K{\"o}niginnen und haben einen hervorstechenden M{\"a}nnchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergr{\"o}ßerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme {\"o}kologische Bedingungen nicht nur zu Anpassungen der visuellen F{\"a}higkeiten, sondern auch des olfaktorischen Systems gef{\"u}hrt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalit{\"a}ten zugrundeliegen, und bei der Erforschung neuronaler Plastizit{\"a}t, welche verkn{\"u}pft ist mit der lebenslangen Flexibilit{\"a}t eines individuellen Verhaltensrepertoires.}, subject = {Neuroethologie}, language = {en} }