@article{HornickRichterHarpoleetal.2022, author = {Hornick, Thomas and Richter, Anett and Harpole, William Stanley and Bastl, Maximilian and Bohlmann, Stephanie and Bonn, Aletta and Bumberger, Jan and Dietrich, Peter and Gemeinholzer, Birgit and Grote, R{\"u}diger and Heinold, Bernd and Keller, Alexander and Luttkus, Marie L. and M{\"a}der, Patrick and Motivans Švara, Elena and Passonneau, Sarah and Punyasena, Surangi W. and Rakosy, Demetra and Richter, Ronny and Sickel, Wiebke and Steffan-Dewenter, Ingolf and Theodorou, Panagiotis and Treudler, Regina and Werchan, Barbora and Werchan, Matthias and Wolke, Ralf and Dunker, Susanne}, title = {An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals}, series = {Plants, People, Planet}, volume = {4}, journal = {Plants, People, Planet}, number = {2}, doi = {10.1002/ppp3.10234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276487}, pages = {110 -- 121}, year = {2022}, abstract = {Societal Impact Statement Pollen relates to many aspects of human and environmental health, which protection and improvement are endorsed by the United Nations Sustainable Development Goals. By highlighting these connections in the frame of current challenges in monitoring and research, we discuss the need of more integrative and multidisciplinary pollen research related to societal needs, improving health of humans and our ecosystems for a sustainable future. Summary Pollen is at once intimately part of the reproductive cycle of seed plants and simultaneously highly relevant for the environment (pollinators, vector for nutrients, or organisms), people (food safety and health), and climate (cloud condensation nuclei and climate reconstruction). We provide an interdisciplinary perspective on the many and connected roles of pollen to foster a better integration of the currently disparate fields of pollen research, which would benefit from the sharing of general knowledge, technical advancements, or data processing solutions. We propose a more interdisciplinary and holistic research approach that encompasses total environmental pollen diversity (ePD) (wind and animal and occasionally water distributed pollen) at multiple levels of diversity (genotypic, phenotypic, physiological, chemical, and functional) across space and time. This interdisciplinary approach holds the potential to contribute to pressing human issues, including addressing United Nations Sustainable Development Goals, fostering social and political awareness of these tiny yet important and fascinating particles.}, language = {en} } @phdthesis{Sagwe2022, author = {Sagwe, Rose Nyakemiso}, title = {Pollinator diversity, pollination deficits, and pollination efficiency in avocado (\(Persea\) \(americana\)) production across different landscapes in Murang'a county, Kenya}, doi = {10.25972/OPUS-26920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Avocado (Persea americana Mill.) is a major horticultural crop that relies on insect mediated pollination. In avocado production, a knowledge gap exists as to the importance of insect pollination, especially in East African smallholder farms. Although it is evident that pollination improves the yield of avocado fruits, it is still unclear if pollination has benefits on fruit quality and the nutritional profile, particularly oils. Prior studies have shown that honey bees increase avocado's fruit set and yield. However, an avocado flower is being visited by various insect species. Therefore, determining pollination efficiency will allow a comparison of the relative importance of the different insect species to optimize crop pollination for increased fruit set and crop yield and pollinator conservation. This study was conducted in a leading smallholder avocado production region in Kenya, first I assessed the dependence of avocado fruit set on insect pollination and whether current smallholder production systems suffer from a deficit in pollination services. Furthermore, I assessed if supplementation with colonies of the Western honey bee (Apis mellifera L.) to farms mitigated potential pollination deficits. The results revealed a very high reliance of avocado on insect pollinators, with a significantly lower fruit set observed for self- and wind-pollinated (17.4\%) or self-pollinated flowers (6.4\%) in comparison with insect-pollinated flowers (89.5\%). I found a significant pollination deficit across farms, with hand-pollinated flowers on average producing 20.7\% more fruits than non-treated open flowers prior to fruit abortion. This pollination deficit could be compensated by the supplementation of farms with A. mellifera colonies. These findings suggest that pollination is limiting fruit set in avocado and that A. mellifera supplementation on farms is a potential option to increase fruit yield. Secondly, I investigated the contribution of insect pollination to fruit and seed weight, oil, protein, carbohydrate, and phytochemicals contents (flavonoids and phenolics), and whether supplementation with pollinators (honey bee) could improve these fruit parameters was assessed. This was through pollinator-manipulative pollination treatments: hand, open, pollinator exclusion experiments. The results showed that avocado fruit weight was significantly higher in open and hand-pollinated than pollinator exclusion treatments, indicating that flower visitors/pollinators contribute to avocado yields and enhance marketability. Furthermore, insect pollination resulted in heavier seeds and higher oil contents, indicating that insect pollination is beneficial for the fruit's high seed yield and quantity of oil. Honey bee supplementation also enhanced the avocado fruit weight by 18\% more than in control farms and slightly increased the avocado oil content (3.6\%). Contrarily, insect pollination did not influence other assayed fruit quality parameters (protein, carbohydrates, and phytochemicals). These results indicate that insect pollinators are essential for optimizing avocado yields, nutritional quality (oils), and thus marketability, underscoring the value of beehive supplementation to achieve high-quality avocado fruits and improved food security. Thirdly, pollinator efficiency based on pollen deposition after single visits by different pollinator species in avocado flowers was tested, and their frequency was recorded. The estimated pollination efficiency was highest in honey bees (Apis mellifera), followed by the hoverfly species (Phytomia incisa). These two species had the highest pollen deposition and more pollen grains on their bodies. In addition, honey bees were the most frequent avocado flower visitors, followed by flies. The findings from this study highlight the higher pollination efficiency of honey bees and Phytomia incisa. Hence, management practices supporting these species will promote increased avocado fruit yield. Additionally, these results imply that managed honey bees can be maintained to improve avocado pollination, particularly in areas lacking sufficient wild pollinators.}, language = {en} } @phdthesis{Vogel2022, author = {Vogel, Cassandra Ezra}, title = {The effects of land-use and agroecological practices on biodiversity and ecosystem services in tropical smallholder farms}, doi = {10.25972/OPUS-29066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290661}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Biodiversity is in rapid decline worldwide. These declines are more pronounced in areas that are currently biodiversity rich, but economically poor - essentially describing many tropical regions in the Global South where landscapes are dominated by smallholder agriculture. Agriculture is an important driver of biodiversity decline, through habitat destruction and unsustainable practices. Ironically, agriculture itself is dependent on a range of ecosystem services, such as pollination and pest control, provided by biodiversity. Biodiversity on fields and the delivery of ecosystem services to crops is often closely tied to the composition of the surrounding landscape - complex landscapes with a higher proportion of (semi-)natural habitats tend to support a high abundances and biodiversity of pollinators and natural enemies that are beneficial to crop production. However, past landscape scale studies have focused primarily on industrialized agricultural landscapes in the Global North, and context dependent differences between regions and agricultural systems are understudied. Smallholder agriculture supports 2 billion people worldwide and contributes to over half the world's food supply. Yet smallholders, particularly in sub-Saharan Africa, are underrepresented in research investigating the consequences of landscape change and agricultural practices. Where research in smallholder agriculture is conducted, the focus is often on commodity crops, such as cacao, and less on crops that are directly consumed by smallholder households, though the loss of services to these crops could potentially impact the most vulnerable farmers the hardest. Agroecology - a holistic and nature-based approach to agriculture, provides an alternative to unsustainable input-intensive agriculture. Agroecology has been found to benefit smallholders through improved agronomical and food-security outcomes. Co-benefits of agroecological practices with biodiversity and ecosystem services are assumed, but not often empirically tested. In addition, the local and landscape effects on biodiversity and ecosystem services are more commonly studied in isolation, but their potentially interactive effects are so far little explored. Our study region in northern Malawi exemplifies many challenges experienced by smallholder farmers throughout sub-Saharan Africa and more generally in the Global South. Malawi is located in a global biodiversity hotspot, but biodiversity is threatened by rapid habitat loss and a push for input-intensive agriculture by government and other stakeholders. In contrast, agroecology has been effectively promoted and implemented in the study region. We investigated how land-use differences and the agroecological practices affects biodiversity and ecosystem services of multiple taxa in a maize-bean intercropping system (Chapter 2), and pollination of pumpkin (Chapter 3) and pigeon pea (Chapter 4). Additionally, the effects of local and landscape scale shrub- to farmland habitat conversion was investigated on butterfly communities, as well as the potential for agroecology to mitigate these effects (Chapter 5).}, language = {en} }