@phdthesis{Kunz2008, author = {Kunz, Britta K.}, title = {Frugivory and Seed Dispersal: Ecological Interactions between Baboons, Plants, and Dung Beetles in the Savanna-Forest Mosaic of West Africa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37519}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das Guinea-Savanne-Wald-Mosaik Westafrikas weist einen hohen Reichtum an Pflanzenarten auf, deren Samen durch Frugivore ausgebreitet werden. Afrikanische Savannen beherbergen zudem die artenreichste Dungk{\"a}ferfauna weltweit. Dennoch wurden Interaktionen zwischen Fruchtpflanzen, Primaten und Dungk{\"a}fern in Savannen{\"o}kosysteme bisher kaum erforscht. Meine Untersuchungen am Anubispavian (Papio anubis Lesson 1827, Cercopithecinae) im Como{\´e} Nationalpark (CNP), im NO der Elfenbeink{\"u}ste, zeigten, dass sich westafrikanische Pavianpopulationen in verschiedener Hinsicht von Populationen in Ostafrika unterscheiden. Paviane werden zumeist vornehmlich als Pr{\"a}datoren der Samen ihrer Nahrungspflanzen angesehen. Im Savannen-Wald-Mosaik Westafrikas ern{\"a}hren sie sich jedoch {\"u}berwiegend frugivor und sind bedeutende Samenausbreiter einer Vielzahl von Geh{\"o}lzpflanzenarten mit unterschiedlichen Fruchttypen und Samengr{\"o}ßen. Sie breiten intakte Samen von mind. 22\% der regionalen Geh{\"o}lzpflanzenarten aus. Ihr "Ausbreitungspotential" bzgl. Samenzahl und Samengr{\"o}ße ist mit dem der großen Menschenaffen vergleichbar. Der Anteil der Baumarten im Nahrungsspektrum der Paviane ist signifikant h{\"o}her als es aufgrund des Anteils im regionalen Artenpool der Geh{\"o}lzpflanzen zu erwarten w{\"a}re. Fruchtarten, die von Pavianen gefressen wurden, waren signifikant gr{\"o}ßer als nicht konsumierte Arten. Von verschiedenen morphologischen Fruchtmerkmalen eignen sich Fruchttyp und Farbe am besten, um vorherzusagen, ob die Fr{\"u}chte einer Art Nahrungsbestandteil der Paviane im CNP sind. Fruchttyp und Samengr{\"o}ße wiederum sind am besten geeignet, um auf die Art der Nutzung (Samenausbreitung bzw. -pr{\"a}dation) zu schließen. Die Samengr{\"o}ße einer Pflanze ist ein wichtiges Fitnessmerkmal, das verschiedene Abschnitte von der Fruchtentwicklung bis zur Etablierung des Keimlings beeinflussen kann. Sie weist bei vielen Pflanzenarten erhebliche intraspezifische Schwankungen auf. Primaten k{\"o}nnten aus unterschiedlichen Gr{\"u}nden Fr{\"u}chte mit bestimmter Samengr{\"o}ße ausw{\"a}hlen, zum Beispiel um unverdaulichen Ballast zu reduzieren oder um den Fruchtfleischgewinn pro Frucht zu optimieren. Bei acht von zehn untersuchten Pflanzenarten, die sich in Fruchttyp, Samenzahl und Samengr{\"o}ße unterscheiden, erwiesen sich die Paviane als selektiv in Bezug auf die Samengr{\"o}ße. F{\"u}r die intraspezifische Fruchtauswahl der Paviane scheint unter anderem das je nach Frucht- und Samenform unterschiedlich variierende Verh{\"a}ltnis von Fruchtfleisch zu Samen eine Rolle zu spielen. Als Habitatgeneralisten (mit einer Pr{\"a}ferenz f{\"u}r Waldhabitate), die relativ große Gebiete durchstreifen, scheinen Paviane besonders wichtig f{\"u}r den genetischen Austausch der Pflanzen zwischen entfernten Waldinseln. Da die meisten Geh{\"o}lzpflanzenarten im Savannen-Wald-Mosaik des CNP mittelgroße bis große Fr{\"u}chte und Samen haben, kommt den Pavianen eine herausragende Rolle bei der Samenausbreitung und nat{\"u}rlichen Regeneration dieses {\"O}kosystems zu. Die Bedeutung der Paviane f{\"u}r die Samenausbreitung von Pflanzenarten mit kleinen Fr{\"u}chten sollte jedoch nicht untersch{\"a}tzt werden. Meine Untersuchungen an typischen "vogelausgebreiteten" Baumarten, von denen V{\"o}gel fast ausschließlich unreife Fr{\"u}chte fraßen, weisen darauf hin, dass eine qualitative und quantitative Beurteilung verschiedener Frugivorengruppen allein aufgrund der Fruchtsyndrome nicht immer zuverl{\"a}ssig ist. Anubispaviane breiten in der Regel mehrere Pflanzensamen in einzelnen F{\"a}zes aus was {\"u}blicherweise als ung{\"u}nstig f{\"u}r die Pflanze angesehen wird. Die Samen aller Pflanzenarten, die in Pavianf{\"a}zes im CNP w{\"a}hrend Zeiten saisonal hoher Dungk{\"a}feraktivit{\"a}t zu finden waren, k{\"o}nnen jedoch potentiell von Dungk{\"a}fern ausgebreitet werden. Die Dungk{\"a}fer-Aktivit{\"a}t im Untersuchungsgebiet an Pavianf{\"a}zes war hoch, es wurden 99 Arten aus 26 Gattungen nachgewiesen. Sowohl die Wahrscheinlichkeit sekund{\"a}rer Samenausbreitung durch Dungk{\"a}fer als auch das sekund{\"a}re r{\"a}umliche Ausbreitungsmuster h{\"a}ngen von der Struktur und Zusammensetzung der Dungk{\"a}fergemeinschaft am Ort der prim{\"a}ren Ausbreitung ab. Die Dungk{\"a}fergemeinschaft wiederum scheint stark von der Vegetation beeinflusst zu sein. Im Savannen-Wald-Mosaik Westafrikas erwartete ich daher deutliche Unterschiede in der sekund{\"a}ren Ausbreitung zwischen Samen, die von Pavianen in die Savanne bzw. in den Wald ausgebreitet werden. Experimente ergaben, dass Samen, die von Pavianen in die Savanne ausgebreitet werden, eine h{\"o}here Wahrscheinlichkeit haben (a) {\"u}berhaupt sekund{\"a}r durch Dungk{\"a}fer ausgebreitet zu werden, (b) horizontal von Telekopriden vom Ort der prim{\"a}ren Ausbreitung wegbewegt zu werden, (c) relativ schnell aus den F{\"a}zes entfernt zu werden und (d) {\"u}ber relativ gr{\"o}ßere Distanzen ausgebreitet zu werden als Samen im Wald. Generell sollten Savannenpflanzen und Habitatgeneralisten unter den Pflanzenarten, deren Samen von Pavianen in die Savanne ausgebreitet werden, am ehesten von sekund{\"a}rer Ausbreitung durch Dungk{\"a}fer profitieren.}, subject = {Anubispavian}, language = {en} } @phdthesis{Koenig2024, author = {K{\"o}nig, Sebastian Thomas}, title = {Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps)}, doi = {10.25972/OPUS-35460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354608}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth's ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species' traits, antagonistic biotic interactions, and even species' microbial mutualists may determine temperature-dependent assembly processes, the lion's share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the 'altitudinal niche-breadth hypothesis', species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion \& Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant-herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches.}, subject = {Heuschrecken}, language = {en} }