@phdthesis{Kotzsch2008, author = {Kotzsch, Alexander}, title = {BMP Ligand-Rezeptor-Komplexe: Molekulare Erkennung am Beispiel der Spezifischen Interaktion zwischen GDF-5 und BMPR-IB}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31040}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Knochenwachstumsfaktoren (Bone Morphogenetic Proteins, BMPs) sind ubiquit{\"a}re, sekretierte Proteine mit vielf{\"a}ltigen biologischen Funktionen. Die Vielfalt an zellul{\"a}ren Prozessen, die durch BMPs reguliert werden, von der Knochenentwicklung und Organhom{\"o}ostase bis hin zur Neurogenese, erstaunt - und wirft angesichts von teils redundanten, teils spezifischen Funktionen der BMPs Fragen zu den Mechanismen ihrer Signal{\"u}bermittlung auf. Die Signaltransduktion von BMPs erfolgt wie bei den strukturell verwandten TGF-\&\#946;s und Activinen durch die ligandeninduzierte Oligomerisierung von transmembranen Serin/Threonin-Kinaserezeptoren, von denen zwei Typen - Typ I und Typ II - existieren. Einer Vielzahl von mehr als 18 BMP-Liganden stehen nach derzeitigem Erkenntnisstand nur vier Typ I und drei Typ II Rezeptorsubtypen f{\"u}r die Bildung von heteromeren Rezeptorkomplexen zur Verf{\"u}gung. Ein BMP-Ligand kann hochspezifisch nur einen bestimmten Rezeptorsubtyp oder in einer promisken Art und Weise mehrere Rezeptorsubtypen binden. Trotz dieser Bindungspromiskuit{\"a}t {\"u}ben BMPs ihre biologische Funktion {\"u}berwiegend hochspezifisch aus, d.h. abh{\"a}ngig vom Liganden werden spezifische zellul{\"a}re Prozesse reguliert. Somit stellt sich die Frage, wie die Bildung von heteromeren Ligand-Rezeptor-Komplexen und die Aktivierung definierter intrazellul{\"a}rer Signalkaskaden zusammenh{\"a}ngen und wie letztlich ein bestimmtes BMP-Signal durch einen „Flaschenhals", repr{\"a}sentiert durch die begrenzte Anzahl an Rezeptorsubtypen, in das Zellinnere {\"u}bermittelt wird. Die Interaktionen zwischen BMP-2 / GDF-5 und den Typ I Rezeptoren BMPR-IA / BMPR-IB sind ein Paradebeispiel f{\"u}r Bindungspromiskuit{\"a}t und -spezifit{\"a}t. W{\"a}hrend BMP-2 beide Rezeptoren BMPR-IA und BMPR-IB mit gleicher Bindungsaffinit{\"a}t bindet („promiske Interaktion"), zeigt GDF-5 eine 15-20fach h{\"o}here Bindungsaffinit{\"a}t zu BMPR-IB („spezifische" Interaktion). Dieser Unterschied ist scheinbar gering, aber physiologisch {\"u}beraus relevant. Um Einblick in die Mechanismen der molekularen Erkennung zwischen den Bindungspartnern zu gewinnen, wurden bin{\"a}re und tern{\"a}re Komplexe aus den Liganden BMP-2 oder GDF-5, den extrazellul{\"a}ren Dom{\"a}nen der Typ I Rezeptoren BMPR-IA oder BMPR-IB sowie der extrazellul{\"a}ren Dom{\"a}ne des Typ II Rezeptors ActR-IIB untersucht. Die hier vorliegende Arbeit beschreibt die strukturelle und funktionelle Analyse dieser Ligand-Rezeptor-Komplexe. Um den Einfluss struktureller Flexibilit{\"a}t auf die BMP Typ I Rezeptor Erkennung n{\"a}her zu analysieren, wurde zudem die Struktur von BMPRIA in freiem Zustand mittels NMR-Spektroskopie aufgekl{\"a}rt. Aus Mutagenesedaten und der Kristallstruktur des GDF-5•BMPR-IB-Komplexes lassen sich im Vergleich zu bekannten Kristallstrukturen Merkmale ableiten, mit denen die Ligand-Rezeptor-Bindung und -Erkennung charakterisiert werden kann: (1) Die Hauptbindungsdeterminanten in Komplexen von BMPR-IA und BMPR-IB mit ihren Liganden sind unterschiedlich. W{\"a}hrend in Komplexen mit BMPR-IB ein hydrophobes Motiv die Bindungsaffinit{\"a}t bestimmt, tr{\"a}gt in Komplexen mit BMPR-IA eine polare Interaktion signifikant zur Bindungsenergie bei. Ein Vergleich der Strukturen von freien und gebundenen Liganden und Typ I Rezeptoren zeigt, dass interessanterweise diese Hauptbindemotive erst bei der Ligand-Rezeptor-Interaktion entstehen, sodass ein „induced fit" vorliegt und die Molek{\"u}le entsprechend „aufeinander falten". (2) Die Bindungsspezifit{\"a}t wird durch periphere Schleifen in den Typ I Rezeptoren bestimmt. Wie Untersuchungen von Punktmutationen in BMPR-IA zeigen, die einer krebsartigen Darmerkrankung (Juvenile Polyposis) zugrunde liegen, f{\"u}hrt erst die „richtige" Kombination aus Flexibilit{\"a}t in den Schleifen und Rigidit{\"a}t des Rezeptorgrundger{\"u}sts zu signalaktiven Typ I Rezeptoren mit einer potentiell den Liganden komplement{\"a}ren Oberfl{\"a}che. Die mangelnde sterische Komplementarit{\"a}t von Ligand- und Rezeptoroberfl{\"a}chen f{\"u}hrt zu der niedrigeren Bindungsaffinit{\"a}t von GDF-5 zu BMPR-IA im Vergleich zu BMPR-IB. Interessanterweise zeigen die hier vorgestellten, hochaufgel{\"o}sten Strukturdaten, dass die Orientierungen/Positionen der Typ I Rezeptoren BMPR-IA und BMPR-IB in den Bindeepitopen der Liganden BMP-2 und GDF-5 variieren. Unter der Voraussetzung, dass die extrazellul{\"a}re Dom{\"a}ne, das Transmembransegment und die intrazellul{\"a}re Dom{\"a}ne der Typ I Rezeptoren ein starres Element bilden, sollte sich die unterschiedliche Orientierung der extrazellul{\"a}ren Dom{\"a}nen der Typ I Rezeptoren in der Anordnung der Kinasedom{\"a}nen widerspiegeln und sich auf die Signaltransduktion auswirken. M{\"o}glicherweise ist eine bestimmte Anordnung der Kinasedom{\"a}nen der Typ I und Typ II Rezeptoren f{\"u}r eine effiziente Phosphorylierung bzw. Signaltransduktion erforderlich. Der Vergleich mehrerer Ligand-Typ I Rezeptor-Komplexe zeigt, dass die unterschiedliche Orientierung dieser Rezeptoren m{\"o}glicherweise vom Liganden abh{\"a}ngt. Angesichts der Bindungspromiskuit{\"a}t unter BMP-Liganden und -Rezeptoren k{\"o}nnten so spezifische Signale {\"u}bermittelt und spezifische biologische Funktionen reguliert werden. Die in dieser Arbeit vorgestellten Erkenntnisse tragen wesentlich zur strukturellen Charakterisierung der Ligand-Rezeptor-Erkennung in der BMP-Familie bei. Die Frage, warum trotz strukturell hoch homologer Liganden und Rezeptoren und weitgehend konservierten Bindeepitopen eine teils promiske und teils spezifische Interaktion m{\"o}glich ist, kann nun f{\"u}r die Liganden BMP-2 und GDF-5 sowie den beiden Typ I Rezeptoren BMPR-IA und BMPR-IB beantwortet werden.}, subject = {Cytokine}, language = {de} } @article{KlammertMuellerHellmannetal.2015, author = {Klammert, Uwe and M{\"u}ller, Thomas D. and Hellmann, Tina V. and Wuerzler, Kristian K. and Kotzsch, Alexander and Schliermann, Anna and Schmitz, Werner and Kuebler, Alexander C. and Sebald, Walter and Nickel, Joachim}, title = {GDF-5 can act as a context-dependent BMP-2 antagonist}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {77}, doi = {10.1186/s12915-015-0183-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125550}, year = {2015}, abstract = {Background Bone morphogenetic protein (BMP)-2 and growth and differentiation factor (GDF)-5 are two related transforming growth factor (TGF)-β family members with important functions in embryonic development and tissue homeostasis. BMP-2 is best known for its osteoinductive properties whereas GDF-5—as evident from its alternative name, cartilage derived morphogenetic protein 1—plays an important role in the formation of cartilage. In spite of these differences both factors signal by binding to the same subset of BMP receptors, raising the question how these different functionalities are generated. The largest difference in receptor binding is observed in the interaction with the type I receptor BMPR-IA. GDF-5, in contrast to BMP-2, shows preferential binding to the isoform BMPR-IB, which is abrogated by a single amino acid (A57R) substitution. The resulting variant, GDF-5 R57A, represents a "BMP-2 mimic" with respect to BMP receptor binding. In this study we thus wanted to analyze whether the two growth factors can induce distinct signals via an identically composed receptor. Results Unexpectedly and dependent on the cellular context, GDF-5 R57A showed clear differences in its activity compared to BMP-2. In ATDC-5 cells, both ligands induced alkaline phosphatase (ALP) expression with similar potency. But in C2C12 cells, the BMP-2 mimic GDF-5 R57A (and also wild-type GDF-5) clearly antagonized BMP-2-mediated ALP expression, despite signaling in both cell lines occurring solely via BMPR-IA. The BMP-2- antagonizing properties of GDF-5 and GDF-5 R57A could also be observed in vivo when implanting BMP-2 and either one of the two GDF-5 ligands simultaneously at heterotopic sites. Conclusions Although comparison of the crystal structures of the GDF-5 R57A:BMPR-IAEC- and BMP-2:BMPR-IAEC complex revealed small ligand-specific differences, these cannot account for the different signaling characteristics because the complexes seem identical in both differently reacting cell lines. We thus predict an additional component, most likely a not yet identified GDF-5-specific co-receptor, which alters the output of the signaling complexes. Hence the presence or absence of this component then switches GDF-5′s signaling capabilities to act either similar to BMP-2 or as a BMP-2 antagonist. These findings might shed new light on the role of GDF-5, e.g., in cartilage maintenance and/or limb development in that it might act as an inhibitor of signaling events initiated by other BMPs.}, language = {en} }