@phdthesis{Wong2001, author = {Wong, Amanda}, title = {Implications of Advanced Glycation Endproducts in Oxidative Stress and Neurodegenerative Disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The reactions of reducing sugars with primary amino groups are the most common nonenzymatic modifications of proteins. Subsequent rearrangements, oxidations, and dehydrations yield a heterogeneous group of mostly colored and fluorescent compounds, termed "Maillard products" or advanced glycation end products (AGEs). AGE formation has been observed on long-lived proteins such as collagen, eye lens crystalline, and in pathological protein deposits in Alzheimer's (AD) and Parkinson's disease (PD) and dialysis-related amyloidosis. AGE-modified proteins are also involved in the complications of diabetes. AGEs accumulate in the the ß-amyloid plaques and neurofibrillary tangles (NFT) associated with AD and in the Lewy bodies characteristic of PD. Increasing evidence supports a role for oxidative stress in neurodegenerative disorders such as AD and PD. AGEs have been shown to contribute towards oxidative damage and chronic inflammation, whereby activated microglia secrete cytokines and free radicals, including nitric oxide (NO). Roles proposed for NO in the pathophysiology of the central nervous system are increasingly diverse and range from intercellular signaling, through necrosis of cells and invading pathogens, to the involvement of NO in apoptosis. Using in vitro experiments, it was shown that AGE-modified bovine serum albumin (BSA-AGE) and AGE-modified ß-amyloid, but not their unmodified proteins, induce NO production in N-11 murine microglia cells. This was mediated by the receptor for AGEs (RAGE) and upregulation of the inducible nitric oxide synthase (iNOS). AGE-induced enzyme activation and NO production could be blocked by intracellular-acting antioxidants: Ginkgo biloba special extract EGb 761, the estrogen derivative, 17ß-estradiol, R-(+)-thioctic acid, and a nitrone-based free radical trap, N-tert.-butyl-*-phenylnitrone (PBN). Methylglyoxal (MG) and 3-deoxyglucosone (3-DG), common precursors in the Maillard reaction, were also tested for their ability to induce the production of NO in N-11 microglia. However, no significant changes in nitrite levels were detected in the cell culture medium. The significance of these findings was supported by in vivo immunostaining of AD brains. Single and double immunostaining of cryostat sections of normal aged and AD brains was performed with polyclonal antibodies to AGEs and iNOS and monoclonal antibodies to Aß and PHF-1 (marker for NFT) and reactive microglia. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localisation of AGE and iNOS in the upper neuronal layers of the temporal (Area 22) and entorhinal (Area 28, 34) cortices compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localised with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localised with AGE and iNOS as well as AGE and ß-amyloid were found surrounding mature but not diffuse ß-amyloid plaques in the AD brain. Parts of NFT were AGE-immunoreactive. Immunohistochemical staining of cryostat sections of normal aged and PD brains was performed with polyclonal antibodies to AGEs. The sections were counterstained with monoclonal antibodies to neurofilament components and a-synuclein. AGEs and a-synuclein were colocalized in very early Lewy bodies in the substantia nigra of cases with incidental Lewy body disease. These results support an AGE-induced oxidative damage due to the action of free radicals, such as NO, occurring in the AD and PD brains. Furthermore, the involvement of astrocytes and microglia in this pathological process was confirmed immunohistochemically in the AD brain. It is suggested that oxidative stress and AGEs participate in the very early steps of Lewy body formation and resulting cell death in PD. Since the iNOS gene can be regulated by redox-sensitive transcription factors, the use of membrane permeable antioxidants could be a promising strategy for the treatment and prevention of chronic inflammation in neurodegenerative disorders.}, subject = {Maillard-Reaktion}, language = {en} }