@article{AmbrožovaFinnbergFeldmannetal.2022, author = {Ambrožov{\´a}, Lucie and Finnberg, Sven and Feldmann, Benedikt and Buse, J{\"o}rn and Preuss, Henry and Ewald, J{\"o}rg and Thorn, Simon}, title = {Coppicing and topsoil removal promote diversity of dung-inhabiting beetles (Coleoptera: Scarabaeidae, Geotrupidae, Staphylinidae) in forests}, series = {Agricultural and Forest Entomology}, volume = {24}, journal = {Agricultural and Forest Entomology}, number = {1}, doi = {10.1111/afe.12472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258296}, pages = {104-113}, year = {2022}, abstract = {Central European forests experience a substantial loss of open-forest organisms due to forest management and increasing nitrogen deposition. However, management strategies, removing different levels of nitrogen, have been rarely evaluated simultaneously. We tested the additive effects of coppicing and topsoil removal on communities of dung-inhabiting beetles compared to closed forests. We sampled 57 021 beetles, using baited pitfall traps exposed on 27 plots. Experimental treatments resulted in significantly different communities by promoting open-habitat species. While alpha diversity did not differ among treatments, gamma diversity of Geotrupidae and Scarabaeidae and beta diversity of Staphylinidae were higher in coppice than in forest. Functional diversity of rove beetles was higher in both, coppice and topsoil-removed plots, compared to control plots. This was likely driven by higher habitat heterogeneity in established forest openings. Five dung beetle species and four rove beetle species benefitted from coppicing, one red-listed dung beetle and two rove beetle species benefitted from topsoil removal. Our results demonstrate that dung-inhabiting beetles related to open forest patches can be promoted by both, coppicing and additional topsoil removal. A mosaic of coppice and bare-soil-rich patches can hence promote landscape-level gamma diversity of dung and rove beetles within forests.}, language = {en} } @article{FlorenLinsenmairMueller2022, author = {Floren, Andreas and Linsenmair, Karl Eduard and M{\"u}ller, Tobias}, title = {Diversity and functional relevance of canopy arthropods in Central Europe}, series = {Diversity}, volume = {14}, journal = {Diversity}, number = {8}, issn = {1424-2818}, doi = {10.3390/d14080660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285924}, year = {2022}, abstract = {Although much is known about the ecology and functional importance of canopy arthropods in temperate forests, few studies have tried to assess the overall diversity and investigate the composition and dynamics of tree-specific communities. This has impeded a deeper understanding of the functioning of forests, and of how to maintain system services. Here, we present the first comprehensive data of whole arthropod communities, collected by insecticidal knockdown (fogging) from 1159 trees in 18 study areas in Central Europe during the last 25 years. The data includes 3,253,591 arthropods from 32 taxa (order, suborder, family) collected on 24 tree species from 18 genera. Fogging collects free-living, ectophytic arthropods in approximately the same number as they occur in the trees. To our knowledge, these are the most comprehensive data available today on the taxonomic composition of arboreal fauna. Assigning all arthropods to their feeding guild provided a proxy of their functional importance. The data showed that the canopy communities were regularly structured, with a clear dominance hierarchy comprised of eight 'major taxa' that represented 87\% of all arthropods. Despite significant differences in the proportions of taxa on deciduous and coniferous trees, the composition of the guilds was very similar. The individual tree genera, on the other hand, showed significant differences in guild composition, especially when different study areas and years were compared, whereas tree-specific traits, such as tree height, girth in breast height or leaf cover, explained little of the overall variance. On the ordinal level, guild composition also differed significantly between managed and primary forests, with a simultaneous low within-group variability, indicating that management is a key factor determining the distribution of biodiversity and guild composition.}, language = {en} }