@article{GrafLettenmaierMuelleretal.2022, author = {Graf, Marlene and Lettenmaier, Ludwig and M{\"u}ller, J{\"o}rg and Hagge, Jonas}, title = {Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12534}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262507}, pages = {48 -- 60}, year = {2022}, abstract = {Deadwood provides a variety of habitats for saproxylic beetles. Whereas the understanding of the drivers promoting saproxylic beetle diversity has improved, the process of deadwood colonisation and beetle's potential to trace resources is poorly understood. However, the mechanisms facilitating deadwood detection by saproxylic beetles appears to be essential for survival, as deadwood is usually scattered in time and space. To investigate whether saproxylic beetles distinguish before their arrival on potential hosts between alive trees and deadwood (lying, stumps, standing), deadwood arrangement (aggregated, distributed) and different heights on standing resources (bottom = 0.5 m, middle = 4-5 m, top = 7.30-11.60 m), we sampled saproxylic beetles with sticky traps in a deadwood experiment. We found on average 67\% higher abundance, 100\% higher species numbers and 50-130\% higher species diversity of colonising saproxylic beetles consistently for all deadwood types compared to alive trees with a distinct community composition on lying deadwood compared to the other resource types. Aggregated deadwood arrangement, which is associated with higher sun-exposure, had a positive effect on species richness. The abundance, species number and diversity, was significantly higher for standing deadwood and alive trees at the bottom section of tree trunks. In contrast to living trees, however, the vertical position had an additional effect on the community composition on standing deadwood. Our results indicate that saproxylic beetles are attracted to potential deadwood habitats and actively select specific trunk sections before arriving on potential hosts. Furthermore, this study highlights the importance of sun-exposed resources for species richness in saproxylic beetles.}, language = {en} } @article{KoenigKraussKelleretal.2022, author = {K{\"o}nig, Sebastian and Krauss, Jochen and Keller, Alexander and Bofinger, Lukas and Steffan-Dewenter, Ingolf}, title = {Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient}, series = {Global Change Biology}, volume = {28}, journal = {Global Change Biology}, number = {13}, doi = {10.1111/gcb.16199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276441}, pages = {4027 -- 4040}, year = {2022}, abstract = {The composition and richness of herbivore and plant assemblages change along climatic gradients, but knowledge about associated shifts in specialization is scarce and lacks controlling for the abundance and phylogeny of interaction partners. Thus, we aimed to test whether the specialization of phytophagous insects in insect-plant interaction networks decreases toward cold habitats as predicted by the 'altitude niche-breadth hypothesis' to forecast possible consequences of interaction rewiring under climate change. We used a non-invasive, standardized metabarcoding approach to reconstruct dietary relationships of Orthoptera species as a major insect herbivore taxon along a broad temperature gradient (~12°C) in Southern Germany. Based on Orthoptera surveys, feeding observations, collection of fecal pellets from >3,000 individuals of 54 species, and parallel vegetation surveys on 41 grassland sites, we quantified plant resource availability and its use by herbivores. Herbivore assemblages were richer in species and individuals at sites with high summer temperatures, while plant richness peaked at intermediate temperatures. Corresponding interaction networks were most specialized in warm habitats. Considering phylogenetic relationships of plant resources, however, the specialization pattern was not linear but peaked at intermediate temperatures, mediated by herbivores feeding on a narrow range of phylogenetically related resources. Our study provides empirical evidence of resource specialization of insect herbivores along a climatic gradient, demonstrating that resource phylogeny, availability, and temperature interactively shape the specialization of herbivore assemblages. Instead of low specialization levels only in cold, harsh habitats, our results suggest increased generalist feeding due to intraspecific changes and compositional differences at both ends of the microclimatic gradient. We conclude that this nonlinear change of phylogeny-based resource specialization questions predictions derived from the 'altitude-niche breadth hypothesis' and highlights the currently limited understanding of how plant-herbivore interactions will change under future climatic conditions.}, language = {en} }