@article{KunzRuehlingMoldovanetal.2021, author = {Kunz, Tobias C. and R{\"u}hling, Marcel and Moldovan, Adriana and Paprotka, Kerstin and Kozjak-Pavlovic, Vera and Rudel, Thomas and Fraunholz, Martin}, title = {The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.644750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232292}, year = {2021}, abstract = {Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.}, language = {en} } @phdthesis{Roth2021, author = {Roth, Nicolas M{\´e}riadec Max Andr{\´e}}, title = {Temporal development of communities with a focus on insects, in time series of one to four decades}, doi = {10.25972/OPUS-23549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235499}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Changes and development are fundamental principles in biocenoses and can affect a multitude of ecological processes. In insect communities phenological and density changes, changes in species richness and community composition, as well as interactions between those changes, are the most important macro processes. However, climate change and other factors like habitat degradation and loss alter these processes leading to shifts and general biodiversity declines. Even though knowledge about insect decline in central Europe increased during the last decades, there are significant knowledge gaps about the development of insect communities in certain habitats and taxa. For example, insect communities in small lentic as well as in forested habitats are under-sampled and reported to be less endangered than communities in other habitats. Furthermore, the changes within habitats and taxa are additionally influenced by certain traits, like host or feeding specialization. To disentangle these influences and to increase the knowledge about the general long-term development of insect communities, comprehensive long-term monitoring studies are needed. In addition, long-term effects of conservation strategies should also be evaluated on large time scales in order to be able to decide on a scientific base which strategies are effective in promoting possibly declining taxa. Hence, this thesis also tackles the effects of an integrative conservation strategy on wood dependent beetle and fungi, beside the development of water beetle and macro moth communities over multiple decades. In Chapter 2 I present a study on the development of water beetle communities (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. Time-standardized capture per waterbody was used during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. Results showed annual declines in both species number (ca. -1\%) and abundance (ca. -2\%). In addition, community composition shifted over time in part due to changing pH values. Hence, the recorded changes during the 28-year study period partly reflect natural succession processes. However, since also moor-related beetle species decreased significantly, it is likely that water beetles in southern Germany are also threatened by non-successional factors, including desiccation, increased nitrogen input and/or mineralization, as well as the loss of specific habitats. The results suggest, that in small to midsize lentic waterbodies, current development should aim for constant creation of new water bodies and protection of moor waterbodies in order to protect water beetle communities on a landscape scale. In Chapter 3 I present an analysis of the development of nocturnal macro moth species richness, abundance and biomass over four decades in forests of southern Germany. Two local scale data sets featuring a coppiced oak forest as well as an oak high forest were analysed separately from a regional data set representing all forest types in the temperate zone of Central Europe. At the regional scale species richness, abundance and biomass showed annual declines of ca. 1 \%, 1.3 \% and 1.4 \%, respectively. These declines were more pronounced in plant host specialists and in dark coloured species. In contrast, species richness increased by ca. 1.5 \% annually in the coppiced forest, while no significant trends were found in the high forest. In contrast to past assumptions, insect decline apparently affects also hyper diverse insect groups in forests. Since host specialists and dark coloured species were affected more heavily by the decline than other groups, habitat loss and climate change seem to be potential drivers of the observed trends. However, the positive development of species richness in the coppiced oak forest indicates that maintaining complex and diverse forest ecosystems through active management might compensate for negative trends in biodiversity. Chapter 4 features a study specifically aiming to investigate the long-term effect of deadwood enrichment as an integrative conservation strategy on saproxylic beetles and fungi in a central European beech forest at a landscape scale. A before-after control-impact design, was used to compare assemblages and gamma diversities of saproxylic organisms (beetles and fungi) in strictly protected old-growth forest areas (reserves) and previously moderately and intensively managed forest areas. Forests were sampled one year before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Ten years after the start of the dead-wood enrichment, neither gamma diversities of saproxylic organisms nor species composition of beetles did reflect the previous management types anymore. However, fungal species composition still mirrored the previous management gradient. The results demonstrated that intentional enrichment of dead wood at the landscape scale can effectively restore communities of saproxylic organisms and may thus be a suitable strategy in addition to permanent strict reserves in order to protect wood dependent organisms in Europe. In this thesis I showed, that in contrast to what was assumed and partly reported so far, also water beetles in lentic water bodies and macro moths in forests decreased in species richness, abundance and biomass during the last three to four decades. In line with earlier studies, especially dark coloured species and specialists decreased more than light-coloured species and generalists. The reasons for these declines could partly be attributed to natural processes and pollution and possibly to climate change. However, further studies, especially experimental ones, will be needed to achieve a better understanding of the reasons for insect decline. Furthermore, analyses of time series data should be interpreted cautiously especially if the number of sampling years is smaller than ten years. In addition, validation techniques such as left- and right- censoring and cross validation should be used in order to proof the robustness of the analyses. However, the lack of knowledge, we are still facing today, should not prevent scientists and practitioners from applying conservation measures. In order to prove the effectiveness of such measures, long-term monitoring is crucial. Such control of success is essential for evidence based and thus adapted conservation strategies of threatened organisms.}, subject = {climate change}, language = {en} } @phdthesis{Solger2021, author = {Solger, Franziska}, title = {Central role of sphingolipids on the intracellular survival of \(Neisseria\) \(gonorrhoeae\) in epithelial cells}, doi = {10.25972/OPUS-24753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae are Gram-negative bacteria with diplococcal shape. As an obligate human pathogen, it is the causative agent of gonorrhoea, a sexually transmitted disease. Gonococci colonize a variety of mucosal tissues, mainly the urogenital tract in men and women. Occasionally N. gonorrhoeae invades the bloodstream, leading to disseminated gonococcal infection. These bacteria possess a repertoire of virulence factors, which expression patterns can be adapted to the environmental conditions of the host. Through the accumulation of antibiotic resistances and in absence of vaccines, some neisserial strains have the potential to spread globally and represent a major public health threat. Therefore, it is necessary to understand the exact molecular mechanisms underlying the successful infection and progression of gonococci within their host. This deeper understanding of neisserial infection and survival mechanisms is needed for the development of new therapeutic agents. In this work, the role of host-cell sphingolipids on the intracellular survival of N. gonorrhoeae was investigated. It was shown that different classes of sphingolipids strongly interact with invasive gonococci in epithelial cells. Therefore, novel and highly specific clickable sphingolipid analogues were applied to study these interactions with this pathogen. The formation of intra- and extracellular sphingosine vesicles, which were able to target gonococci, was observed. This direct interaction led to the uptake and incorporation of sphingosine into the neisserial membrane. Together with in vitro results, sphingosine was identified as a potential bactericidal reagent as part of the host cell defence. By using different classes of sphingolipids and their clickable analogues, essential structural features, which seem to trigger the bacterial uptake, were detected. Furthermore, effects of key enzymes of the sphingolipid signalling pathway were tested in a neutrophil infection model. In conclusion, the combination of click chemistry and infection biology made it possible to shed some light on the dynamic interplay between cellular sphingosine and N. gonorrhoeae. Thereby, a possible "catch-and-kill" mechanism could have been observed.}, subject = {Neisseria gonorrhoeae}, language = {en} } @article{DuMaYanez‐Serranoetal.2021, author = {Du, Baoguo and Ma, Yuhua and Y{\´a}{\~n}ez-Serrano, Ana Maria and Arab, Leila and Fasbender, Lukas and Alfarraj, Saleh and Albasher, Gadah and Hedrich, Rainer and White, Philip J. and Werner, Christiane and Rennenberg, Heinz}, title = {Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding}, series = {New Phytologist}, volume = {229}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17123}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228226}, pages = {3318 -- 3329}, year = {2021}, abstract = {In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO\(_{2}\) assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO\(_{4}\) did not affect CO\(_{2}\)/H\(_{2}\)O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding.}, language = {en} } @article{SeiboldHothornGossneretal.2021, author = {Seibold, Sebastian and Hothorn, Torsten and Gossner, Martin M. and Simons, Nadja K. and Bl{\"u}thgen, Nico and M{\"u}ller, J{\"o}rg and Ambarl{\i}, Didem and Ammer, Christian and Bauhus, J{\"u}rgen and Fischer, Markus and Habel, Jan C. and Penone, Caterina and Schall, Peter and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228309}, pages = {144 -- 148}, year = {2021}, abstract = {Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land-use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1-18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter- and longer-term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671-674) based on a 10-year multi-site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include 'year' as random effect, as suggested by Daskalova et al. (2021), fail to detect non-linear trends and assume that consecutive years are independent samples which is questionable for insect time-series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short-term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions.}, language = {en} } @article{BritzMarkertWitvlietetal.2021, author = {Britz, Sebastian and Markert, Sebastian Matthias and Witvliet, Daniel and Steyer, Anna Maria and Tr{\"o}ger, Sarah and Mulcahy, Ben and Kollmannsberger, Philip and Schwab, Yannick and Zhen, Mei and Stigloher, Christian}, title = {Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy}, series = {Frontiers in Neuroanatomy}, volume = {15}, journal = {Frontiers in Neuroanatomy}, issn = {1662-5129}, doi = {10.3389/fnana.2021.732520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249622}, year = {2021}, abstract = {At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.}, language = {en} } @article{PauliPaulProppertetal.2021, author = {Pauli, Martin and Paul, Mila M. and Proppert, Sven and Mrestani, Achmed and Sharifi, Marzieh and Repp, Felix and K{\"u}rzinger, Lydia and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, doi = {10.1038/s42003-021-01939-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259830}, pages = {407}, year = {2021}, abstract = {Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution.}, language = {en} } @article{HurdGruebelWojciechowskietal.2021, author = {Hurd, Paul J. and Gr{\"u}bel, Kornelia and Wojciechowski, Marek and Maleszka, Ryszard and R{\"o}ssler, Wolfgang}, title = {Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-86078-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260059}, pages = {6852}, year = {2021}, abstract = {In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.}, language = {en} } @article{KruegerMausKressetal.2021, author = {Kr{\"u}ger, Timothy and Maus, Katharina and Kreß, Verena and Meyer-Natus, Elisabeth and Engstler, Markus}, title = {Single-cell motile behaviour of Trypanosoma brucei in thin-layered fluid collectives}, series = {The European Physical Journal E}, volume = {44}, journal = {The European Physical Journal E}, number = {3}, issn = {1292-895X}, doi = {10.1140/epje/s10189-021-00052-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273022}, year = {2021}, abstract = {We describe a system for the analysis of an important unicellular eukaryotic flagellate in a confining and crowded environment. The parasite Trypanosoma brucei is arguably one of the most versatile microswimmers known. It has unique properties as a single microswimmer and shows remarkable adaptations (not only in motility, but prominently so), to its environment during a complex developmental cycle involving two different hosts. Specific life cycle stages show fascinating collective behaviour, as millions of cells can be forced to move together in extreme confinement. Our goal is to examine such motile behaviour directly in the context of the relevant environments. Therefore, for the first time, we analyse the motility behaviour of trypanosomes directly in a widely used assay, which aims to evaluate the parasites behaviour in collectives, in response to as yet unknown parameters. In a step towards understanding whether, or what type of, swarming behaviour of trypanosomes exists, we customised the assay for quantitative tracking analysis of motile behaviour on the single-cell level. We show that the migration speed of cell groups does not directly depend on single-cell velocity and that the system remains to be simplified further, before hypotheses about collective motility can be advanced.}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{LetunicKhedkarBork2021, author = {Letunic, Ivica and Khedkar, Supriya and Bork, Peer}, title = {SMART: recent updates, new developments and status in 2020}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkaa937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363816}, pages = {D458-D460}, year = {2021}, abstract = {SMART (Simple Modular Architecture Research Tool) is a web resource (https://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 9 contains manually curatedmodels formore than 1300 protein domains, with a topical set of 68 new models added since our last update article (1). All the new models are for diverse recombinase families and subfamilies and as a set they provide a comprehensive overview of mobile element recombinases namely transposase, integrase, relaxase, resolvase, cas1 casposase and Xer like cellular recombinase. Further updates include the synchronization of the underlying protein databases with UniProt (2), Ensembl (3) and STRING (4), greatly increasing the total number of annotated domains and other protein features available in architecture analysis mode. Furthermore, SMART's vector-based protein display engine has been extended and updated to use the latest web technologies and the domain architecture analysis components have been optimized to handle the increased number of protein features available.}, language = {en} } @phdthesis{Kuehl2022, author = {K{\"u}hl, Julia}, title = {FAAP100, der FA/BRCA-Signalweg f{\"u}r genomische Stabilit{\"a}t und das DNA-Reparatur-Netzwerk}, doi = {10.25972/OPUS-17166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fanconi-An{\"a}mie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, h{\"a}matologischen Funktionsst{\"o}rungen, einem erh{\"o}hten Risiko f{\"u}r Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung z{\"a}hlt zu den genomischen Instabilit{\"a}tssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivit{\"a}t gegen{\"u}ber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zellul{\"a}re FA-Ph{\"a}notyp zeichnet sich durch eine erh{\"o}hte Chromosomenbr{\"u}chigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verst{\"a}rkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schl{\"u}sselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon l{\"a}sst sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen z{\"a}hlt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und f{\"u}r die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. F{\"u}r FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen geh{\"o}rt auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet. Durch die vorliegende Arbeit wurde eine n{\"a}here Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Ph{\"a}notyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zellul{\"a}re Ph{\"a}notyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenit{\"a}t der Mutation bewiesen war. Unterst{\"u}tzend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Ph{\"a}notyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage daf{\"u}r, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag f{\"u}r den FANCD2-Monoubiquitinierungsprozess und somit f{\"u}r die Aktivierung der FA-abh{\"a}ngigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Ph{\"a}notyp aufwies. Aufgrund der Ergebnisse l{\"a}sst sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgekl{\"a}rt. Beides tr{\"a}gt zu einem besseren Verst{\"a}ndnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zellul{\"a}re FA-Ph{\"a}notyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies k{\"o}nnte zu der Erkl{\"a}rung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem w{\"a}re eine Verwendung in der Krebstherapie denkbar.}, subject = {Fanconi-An{\"a}mie}, language = {de} } @phdthesis{Kortmann2022, author = {Kortmann, Mareike}, title = {Biodiversity and recreation - Optimizing tourism and forest management in forests affected by bark beetles}, doi = {10.25972/OPUS-24031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as 'catastrophe' diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out.}, subject = {Borkenk{\"a}fer}, language = {en} } @phdthesis{Kuhlemann2022, author = {Kuhlemann, Alexander}, title = {Bioorthogonal labeling of neuronal proteins using super-resolution fluorescence microscopy}, doi = {10.25972/OPUS-24373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The synaptic cleft is of central importance for synaptic transmission, neuronal plasticity and memory and thus well studied in neurobiology. To target proteins of interest with high specificity and strong signal to noise conventional immunohistochemistry relies on the use of fluorescently labeled antibodies. However, investigations on synaptic receptors remain challenging due to the defined size of the synaptic cleft of ~20 nm between opposing pre- and postsynaptic membranes. At this limited space, antibodies bear unwanted side effects such as crosslinking, accessibility issues and a considerable linkage error between fluorophore and target of ~10 nm. With recent single molecule localization microscopy (SMLM) methods enabling localization precisions of a few nanometers, the demand for labeling approaches with minimal linkage error and reliable recognition of the target molecules rises. Within the scope of this work, different labeling techniques for super-resolution fluorescence microscopy were utilized allowing site-specific labeling of a single amino acid in synaptic proteins like kainate receptors (KARs), transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory proteins (TARPs), γ-aminobutyric acid type A receptors (GABA-ARs) and neuroligin 2 (NL2). The method exploits the incorporation of unnatural amino acids (uAAs) in the protein of interest using genetic code expansion (GCE) via amber suppression technology and subsequent labeling with tetrazine functionalized fluorophores. Implementing this technique, hard-to-target proteins such as KARs, TARPs and GABA-ARs could be labeled successfully, which could only be imaged insufficiently with conventional labeling approaches. Furthermore, functional studies involving electrophysiological characterization, as well as FRAP and FRET experiments validated that incorporation of uAAs maintains the native character of the targeted proteins. Next, the method was transferred into primary hippocampal neurons and in combination with super-resolution microscopy it was possible to resolve the nanoscale organization of γ2 and γ8 TARPs. Cluster analysis of dSTORM localization data verified synaptic accumulation of γ2, while γ8 was homogenously distributed along the neuron. Additionally, GCE and bioorthogonal labeling allowed visualization of clickable GABA-A receptors located at postsynaptic compartments in dissociated hippocampal neurons. Moreover, saturation experiments and FRET imaging of clickable multimeric receptors revealed successful binding of multiple tetrazine functionalized fluorophores to uAA-modified dimeric GABA-AR α2 subunits in close proximity (~5 nm). Further utilization of tetrazine-dyes via super-resolution microscopy methods such as dSTORM and click-ExM will provide insights to subunit arrangement in receptors in the future. This work investigated the nanoscale organization of synaptic proteins with minimal linkage error enabling new insights into receptor assembly, trafficking and recycling, as well as protein-protein interactions at synapses. Ultimately, bioorthogonal labeling can help to understand pathologies such as the limbic encephalitis associated with GABA-AR autoantibodies and is already in application for cancer therapies.}, subject = {microscopy}, language = {en} } @phdthesis{Boetzl2022, author = {B{\"o}tzl, Fabian Alexander}, title = {The influence of crop management and adjacent agri-environmental scheme type on natural pest control in differently structured landscapes}, doi = {10.25972/OPUS-24140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Summary Chapters I \& II: General Introduction \& General Methods Agriculture is confronted with a rampant loss of biodiversity potentially eroding ecosystem service potentials and adding up to other stressors like climate change or the consequences of land-use change and intensive management. To counter this 'biodiversity crisis', agri-environment schemes (AES) have been introduced as part of ecological intensification efforts. These AES combine special management regimes with the establishment of tailored habitats to create refuges for biodiversity in agricultural landscapes and thus ensure biodiversity mediated ecosystem services such as pest control. However, little is known about how well different AES habitats fulfil this purpose and whether they benefit ecosystem services in adjacent crop fields. Here I investigated how effective different AES habitats are for restoring biodiversity in different agricultural landscapes (Chapter V) and whether they benefit natural pest control in adjacent oilseed rape (Chapter VI) and winter cereal fields (Chapter VII). I recorded biodiversity and pest control potentials using a variety of different methods (Chapters II, V, VI \& VII). Moreover, I validated the methodology I used to assess predator assemblages and predation rates (Chapters III \& IV). Chapter III: How to record ground dwelling predators? Testing methodology is critical as it ensures scientific standards and trustworthy results. Pitfall traps are widely used to record ground dwelling predators, but little is known about how different trap types affect catches. I compared different types of pitfall traps that had been used in previous studies in respect to resulting carabid beetle assemblages. While barrier traps collected more species and deliver more complete species inventories, conventional simple pitfall traps provide reliable results with comparatively little handling effort. Placing several simple pitfall traps in the field can compensate the difference while still saving handling effort.   Chapter IV: How to record predation rates? A plethora of methods has been proposed and used for recording predation rates, but these have rarely been validated before use. I assessed whether a novel approach to record predation, the use of sentinel prey cards with glued on aphids, delivers realistic results. I compared different sampling efforts and showed that obtained predation rates were similar and could be linked to predator (carabid beetle) densities and body-sizes (a proxy often used for food intake rates). Thus, the method delivers reliable and meaningful predation rates. Chapter V: Do AES habitats benefit multi-taxa biodiversity? The main goal of AES is the conservation of biodiversity in agricultural landscapes. I investigated how effectively AES habitats with different temporal continuity fulfil this goal in differently structured landscapes. The different AES habitats investigated had variable effects on local biodiversity. Temporal continuity of AES habitats was the most important predictor with older, more temporally continuous habitats harbouring higher overall biodiversity and different species assemblages in most taxonomic groups than younger AES habitats. Results however varied among taxonomic groups and natural enemies were equally supported by younger habitats. Semi-natural habitats in the surrounding landscape and AES habitat size were of minor importance for local biodiversity and had limited effects. This stresses that newly established AES habitats alone cannot restore farmland biodiversity. Both AES habitats as well as more continuous semi-natural habitats synergistically increase overall biodiversity in agricultural landscapes. Chapter VI: The effects of AES habitats on predators in adjacent oilseed rape fields Apart from biodiversity conservation, ensuring ecosystem service delivery in agricultural landscapes is a crucial goal of AES. I therefore investigated the effects of adjacent AES habitats on ground dwelling predator assemblages in oilseed rape fields. I found clear distance decay effects from the field edges into the field centres on both richness and densities of ground dwelling predators. Direct effects of adjacent AES habitats on assemblages in oilseed rape fields however were limited and only visible in functional traits of carabid beetle assemblages. Adjacent AES habitats doubled the proportion of predatory carabid beetles indicating a beneficial role for pest control. My results show that pest control potentials are largest close to the field edges and beneficial effects are comparably short ranged. Chapter VII: The effects of AES habitats on pest control in adjacent cereal fields Whether distance functions and potential effects of AES habitats are universal across crops is unknown. Therefore, I assessed distance functions of predators, pests, predation rates and yields after crop rotation in winter cereals using the same study design as in the previous year. Resulting distance functions were not uniform and differed from those found in oilseed rape in the previous year, indicating that the interactions between certain adjacent habitats vary with habitat and crop types. Distance functions of cereal-leaf beetles (important cereal pests) and parasitoid wasps were moreover modulated by semi-natural habitat proportion in the surrounding landscapes. Field edges buffered assemblage changes in carabid beetle assemblages over crop rotation confirming their important function as refuges for natural enemies. My results emphasize the beneficial role of field edges for pest control potentials. These findings back the calls for smaller field sizes and more diverse, more heterogeneously structured agricultural landscapes. Chapter VIII: General Discussion Countering biodiversity loss and ensuring ecosystem service provision in agricultural landscapes is intricate and requires strategic planning and restructuring of these landscapes. I showed that agricultural landscapes could benefit maximally from (i) a mixture of AES habitats and semi-natural habitats to support high levels of overall biodiversity and from (ii) smaller continuously managed agricultural areas (i.e. smaller field sizes or the insertion of AES elements within large fields) to maximize natural pest control potentials in crop fields. I propose a mosaic of younger AES habitats and semi-natural habitats to support ecosystem service providers and increase edge density for ecosystem service spillover into adjacent crops. The optimal extent and density of this network as well as the location in which AES and semi-natural habitats interact most beneficially with adjacent crops need further investigation. My results provide a further step towards more sustainable agricultural landscapes that simultaneously allow biodiversity to persist and maintain agricultural production under the framework of ecological intensification.}, subject = {{\"O}kologie}, language = {en} } @phdthesis{Vellmer2022, author = {Vellmer, Tim}, title = {New insights into the histone variant H2A.Z incorporation pathway in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-25796}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The histone variant H2A.Z is a key player in transcription regulation in eukaryotes. Histone acetylations by the NuA4/TIP60 complex are required to enable proper incorporation of the histone variant and to promote the recruitment of other complexes and proteins required for transcription initiation. The second key player in H2A.Z-mediated transcription is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant. By the time this project started little was known about H2A.Z in the unicellular parasite Trypanosoma brucei. Like in other eukaryotes H2A.Z was exclusively found in the transcription start sites of the polycistronic transcription units where it keeps the chromatin in an open conformation to enable RNA-polymerase II-mediated transcription. Previous studies showed the variant colocalizing with an acetylation of lysine on histone H4 and a methylation of lysine 4 on histone H3. Data indicated that HAT2 is linked to H2A.Z since it is required for acetylation of lyinse 10 on histone H4. A SWR1-like complex and a complex homologous to the NuA4/TIP60 could not be identified yet. This study aimed at identifying a SWR1-like remodelling complex in T. brucei and at identifying a protein complex orthologous to NuA4/TIP60 as well as at answering the question whether HAT2 is part of this complex or not. To this end, I performed multiple mass spectrometry-coupled co-Immunoprecipitation assays with potential subunits of a SWR1 complex, HAT2 and a putative homolog of a NuA4/TIP60 subunit. In the course of these experiments, I was able to identify the TbSWR1 complex. Subsequent cell fractionation and chromatin immunoprecipitation-coupled sequencing analysis experiments confirmed, that this complex is responsible for the incorporation of the histone variant H2A.Z in T. brucei. In addition to this chromatin remodelling complex, I was also able to identify two histone acetyltransferase complexes assembled around HAT1 and HAT2. In the course of my study data were published by the research group of Nicolai Siegel that identified the histone acetyltransferase HAT2 as being responsible for histone H4 acetylation, in preparation to promote H2A.Z incorporation. The data also indicated that HAT1 is responsible for acetylation of H2A.Z. According to the literature, this acetylation is required for proper transcription initiation. Experimental data generated in this study indicated, that H2A.Z and therefore TbSWR1 is involved in the DNA double strand break response of T. brucei. The identification of the specific complex composition of all three complexes provided some hints about how they could interact with each other in the course of transcription regulation and the DNA double strand break response. A proximity labelling approach performed with one of the subunits of the TbSWR1 complex identified multiple transcription factors, PTM writers and proteins potentially involved in chromatin maintenance. Overall, this work will provide some interesting insights about the composition of the complexes involved in H2A.Z incorporation in T. brucei. Furthermore, it is providing valuable information to set up experiments that could shed some light on RNA-polymerase II-mediated transcription and chromatin remodelling in T. brucei in particular and Kinetoplastids in general.}, subject = {Chromatinremodelling}, language = {en} } @phdthesis{Lasway2022, author = {Lasway, Julius Vincent}, title = {Impact of human land use on bee diversity and plant-pollinator interactions in Tanzania savannah ecosystems}, doi = {10.25972/OPUS-25772}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {One of the pronounced global challenges facing ecologists is how to feed the current growing human population while sustaining biodiversity and ecosystem services. To shed light on this, I investigated the impact of human land use on bee diversity and plant-pollinator interactions in Tanzania Savannah ecosystems. The thesis comprises the following chapters: Chapter I: General Introduction This chapter provides the background information including the study objectives and hypotheses. It highlights the ecological importance of bees and the main threats facing bee pollinators with a focus on two land-use practices namely livestock grazing and agriculture. It also highlights the diversity and global distribution of bees. It further introduces the tropical savannah ecosystem, its climate, and vegetation characteristics and explains spectacular megafauna species of the system that form centers of wildlife tourism and inadequacy knowledge on pollinators diversity of the system. Finally, this chapter describes the study methodology including, the description of the study area, study design, and data collection. Chapter II: Positive effects of low livestock grazing intensity on East African bee assemblages mediated by increases in floral resources The impact of livestock grazing intensity on bee assemblage has been subjected to research over decades. Moreover, most of these studies have been conducted in temperate Europe and America leaving the huge tropical savannah of East Africa less studied. Using sweep netting and pan traps, a total of 183 species (from 2,691 individuals) representing 55 genera and five families were collected from 24 study sites representing three levels of livestock grazing intensity in savannah ecosystem of northern Tanzania. Results have shown that moderate livestock grazing slightly increased bee species richness. However, high livestock grazing intensity led to a strong decline. Besides, results revealed a unimodal distribution pattern of bee species richness and mean annual temperature. It was also found that the effect of livestock grazing and environmental temperature on bee species richness was mediated by a positive effect of moderate grazing on floral resource richness. The study, therefore, reveals that bee communities of the African savannah zone may benefit from low levels of livestock grazing as this favors the growth of flowering plant species. A high level of livestock grazing intensity will cause significant species losses, an effect that may increase with climatic warming. Chapter III: Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands This study investigated the impact of local agriculture intensification on bee diversity in the Afro tropical drylands of northern Tanzania. Using sweep netting and pan traps, a total of 219 species (from 3,428 individuals) representing 58 genera and six families were collected from 24 study sites (distributed from 702 to 1708 m. asl) representing three levels of agriculture intensity spanning an extensive gradient of mean annual temperature. Results showed that bee species richness increased with agricultural intensity and with increasing temperature. However, the effects of agriculture intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on floral resource richness used by bee pollinators. Moreover, results showed that variation of bee body sizes increases with agricultural intensification, "that effect", however, diminished in environments with higher temperatures. This study reveals that bee assemblages in Afrotropical drylands benefit from agriculture intensification in the way it is currently practiced. Further intensification, including year-round irrigated crop monocultures and extensive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. Therefore, to conserve bee communities in Afro tropical drylands and guarantee pollination services, a mixture of savannah and agriculture, with long periods of fallow land should be maintained. Chapter IV: Impact of land use intensification and local features on plants and pollinators in Sub-Saharan smallholder farms For the first time in the region, this study explores the impact of land-use intensification on plants and pollinators in Sub-Saharan smallholder farms. The study complemented field surveys of bees with a modern DNA metabarcoding approach to characterize the foraged plants and thus built networks describing plant-pollinator interactions at the individual insect level. This information was coupled with quantitative traits of landscape composition and floral availability surrounding each farm. The study found that pollinator richness decreased with increasing impervious and agricultural cover in the landscape, whereas the flower density at each farm correlated with pollinator richness. The intensification of agricultural land use and urbanization correlated with a higher foraging niche overlap among pollinators due to the convergence of individuals' flower-visiting strategies. Furthermore, within farms, the higher availability of floral resources drove lower niche overlap among individuals, greater abundance of flower visitors shaped higher generalization at the networks level (H2I), possibly due to increased competition. These mechanistic understandings leading to individuals' foraging niche overlap and generalism at the network level, could imply stability of interactions and the pollination ecosystem service. The integrative survey proved that plant-pollinator systems are largely affected by land use intensification and by local factors in smallholder farms of Sub-Saharan Africa. Thus, policies promoting nature-based solutions, among which the introduction of more pollinator-friendly practices by smallholder farmers, could be effective in mitigating the intensification of both urban and rural landscapes in this region, as well as in similar Sub-Saharan contexts. Chapter V: A synopsis of the Bee occurrence data of northern Tanzania This study represents a synopsis of the bee occurrence data of northern Tanzania obtained from a survey in the Kilimanjaro, Arusha, and Manyara regions. Bees were sampled using two standardized methods, sweep netting and colored pan traps. The study summed up 953 species occurrences of 45 species belonging to 20 genera and four families (Halictidae, Apidae, Megachilidae, and andrenidae) A. This study serves as the baseline information in understanding the diversity and distribution of bees in the northern parts of the country. Understanding the richness and distribution of bees is a critical step in devising robust conservation and monitoring strategies for their populations since limited taxonomic information of the existing and unidentified bee species makes their conservation haphazard. Chapter VI: General discussion In general, findings obtained in these studies suggest that livestock grazing and agriculture intensification affects bee assemblages and floral resources used by bee pollinators. Results have shown that moderate livestock grazing intensity may be important in preserving bee diversity. However, high level of livestock grazing intensity may result in a strong decline in bee species richness and abundance. Moreover, findings indicate that agriculture intensification with seasonal fallow lands supports high floral resource richness promoting high bee diversity in Afrotropical drylands. Nonetheless, natural savannahs were found to contain unique bee species. Therefore, agriculture intensification with seasonal fallow should go in hand with conserving remnant savannah in the landscapes to increase bee diversity and ensure pollination services. Likewise, findings suggest that increasing urbanization and agriculture cover at the landscape level reduce plant and pollinator biodiversity with negative impacts on their complex interactions with plants. Conversely, local scale availability of floral resources has shown the positive effects in buffering pollinators decline and mitigating all detrimental effects induced by land-use intensification. Moreover, findings suggest that the impact of human land use (livestock grazing and agriculture) do not act in isolation but synergistically interacts with climatic factors such as mean annual temperature, MAT. The impact of MAT on bee species richness in grazing gradient showed to be more detrimental than in agriculture habitats. This could probably be explained by the remaining vegetation cover following anthropogenic disturbance. Meaning that the remaining vegetation cover in the agricultural gradient probably absorbs the solar radiations hence reducing detrimental effect of mean annual temperature on bee species richness. This one is not the case in grazing gradient since the impact of livestock grazing is severe, leaving the bare land with no vegetation cover. Finally, our findings conclude that understanding the interplay of multiple anthropogenic activities and their interaction with MAT as a consequence of ongoing climate change is necessary for mitigating their potential consequences on bee assemblages and the provision of ecosystem services. Morever, future increases in livestock grazing and agriculture intensification (including year-round crop irrigated monocultures and excessive use of agrochemicals) may lead to undesirable consequences such as species loss and impair provision of pollination services.}, subject = {Human land use}, language = {en} } @article{BahenaDaftarianMaroofianetal.2022, author = {Bahena, Paulina and Daftarian, Narsis and Maroofian, Reza and Linares, Paola and Villalobos, Daniel and Mirrahimi, Mehraban and Rad, Aboulfazl and Doll, Julia and Hofrichter, Michaela A. H. and Koparir, Asuman and R{\"o}der, Tabea and Han, Seungbin and Sabbaghi, Hamideh and Ahmadieh, Hamid and Behboudi, Hassan and Villanueva-Mendoza, Cristina and Cort{\´e}s-Gonzalez, Vianney and Zamora-Ortiz, Rocio and Kohl, Susanne and Kuehlewein, Laura and Darvish, Hossein and Alehabib, Elham and La Arenas-Sordo, Maria de Luz and Suri, Fatemeh and Vona, Barbara and Haaf, Thomas}, title = {Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment}, series = {Human Genetics}, volume = {141}, journal = {Human Genetics}, number = {3-4}, issn = {1432-1203}, doi = {10.1007/s00439-021-02303-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267750}, pages = {785-803}, year = {2022}, abstract = {Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75\%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15\%) probands displayed other genetic entities with dual sensory impairment, including Alstr{\"o}m syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92\%. Two (3\%) probands were partially solved and only 3 (5\%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.}, language = {en} } @phdthesis{Niehoerster2022, author = {Nieh{\"o}rster, Thomas}, title = {Spektral aufgel{\"o}ste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben}, doi = {10.25972/OPUS-29657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode f{\"u}r biologische Proben, bei der Biomolek{\"u}le selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolek{\"u}len gleichzeitig m{\"o}glich, wobei {\"u}blicherweise verschiedene Farbstoffe eingesetzt werden, die {\"u}ber ihre Spektren unterschieden werden k{\"o}nnen. Um die Anzahl gleichzeitig verwendbarer F{\"a}rbungen zu maximieren, wird in dieser Arbeit zus{\"a}tzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgel{\"o}ster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenl{\"a}ngen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Aufl{\"o}sung von 32 Kan{\"a}len und gleichzeitig mit sehr hoher zeitlicher Aufl{\"o}sung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so f{\"u}r jedes Pixel die Beitr{\"a}ge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser f{\"u}nf verschiedene F{\"a}rbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 F{\"a}rbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun F{\"a}rbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivit{\"a}t des sFLIM-Systems genutzt werden, um verschiedene Zielmolek{\"u}le voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war m{\"o}glich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmolek{\"u}ls geringf{\"u}gig in Abh{\"a}ngigkeit von seiner Umgebung {\"a}ndern. Weiterhin konnte die sFLIM-Technik mit der hochaufl{\"o}senden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgel{\"o}ste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser ben{\"o}tigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgr{\"o}ßen sowie deren Auswertung durch den Pattern-Matching-Algorithmus erm{\"o}glichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie f{\"u}r Mehrfachf{\"a}rbungen.}, subject = {Fluoreszenzmikroskopie}, language = {de} } @article{LichterPaulPaulietal.2022, author = {Lichter, Katharina and Paul, Mila Marie and Pauli, Martin and Schoch, Susanne and Kollmannsberger, Philip and Stigloher, Christian and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse}, series = {Cell Reports}, volume = {40}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2022.111382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300913}, year = {2022}, abstract = {Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{-/-}\) and wild-type mice. In RIM1α\(^{-/-}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{-/-}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{KayaZeebEngelmayerStrassburgeretal.2022, author = {Kaya-Zeeb, Sinan and Engelmayer, Lorenz and Straßburger, Mara and Bayer, Jasmin and B{\"a}hre, Heike and Seifert, Roland and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Octopamine drives honeybee thermogenesis}, series = {eLife}, volume = {11}, journal = {eLife}, doi = {10.7554/eLife.74334}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301327}, year = {2022}, abstract = {In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.}, language = {en} } @article{ReinhardBertoliniSaitoetal.2022, author = {Reinhard, Nils and Bertolini, Enrico and Saito, Aika and Sekiguchi, Manabu and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond}, series = {Journal of Comparative Neurology}, volume = {530}, journal = {Journal of Comparative Neurology}, number = {9}, doi = {10.1002/cne.25294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276456}, pages = {1507 -- 1529}, year = {2022}, abstract = {Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.}, language = {en} } @article{LaswayPetersNjovuetal.2022, author = {Lasway, Julius V. and Peters, Marcell K. and Njovu, Henry K. and Eardley, Connal and Pauly, Alain and Steffan-Dewenter, Ingolf}, title = {Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands}, series = {Journal of Applied Ecology}, volume = {59}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.14296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311877}, pages = {3014 -- 3026}, year = {2022}, abstract = {The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global-dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body-size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off-growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land-use intensification, including year-round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained.}, language = {en} } @article{SponslerRequierKallniketal.2022, author = {Sponsler, Douglas B. and Requier, Fabrice and Kallnik, Katharina and Classen, Alice and Maihoff, Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts}, series = {Ecology}, volume = {103}, journal = {Ecology}, number = {7}, doi = {10.1002/ecy.3712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287199}, year = {2022}, abstract = {Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.}, language = {en} } @article{GebertSteffan‐DewenterKronbachetal.2022, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Kronbach, Patrick and Peters, Marcell K.}, title = {The role of diversity, body size and climate in dung removal: A correlative and experimental approach}, series = {Journal of Animal Ecology}, volume = {91}, journal = {Journal of Animal Ecology}, number = {11}, doi = {10.1111/1365-2656.13798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293907}, pages = {2181 -- 2191}, year = {2022}, abstract = {The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity-mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity-ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal.}, language = {en} } @article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @article{UhlerHaaseHoffmannetal.2022, author = {Uhler, Johannes and Haase, Peter and Hoffmann, Lara and Hothorn, Torsten and Schmidl, J{\"u}rgen and Stoll, Stefan and Welti, Ellen A. R. and Buse, J{\"o}rn and M{\"u}ller, J{\"o}rg}, title = {A comparison of different Malaise trap types}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293694}, pages = {666 -- 672}, year = {2022}, abstract = {Recent reports on insect decline have highlighted the need for long-term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20\%-55\%, not strictly following trap size but varying with trap type. Total species richness was 20\%-38\% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground-dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies.}, language = {en} } @article{KohlSteffan‐Dewenter2022, author = {Kohl, Patrick L. and Steffan-Dewenter, Ingolf}, title = {Nectar robbing rather than pollinator availability constrains reproduction of a bee-flowered plant at high elevations}, series = {Ecosphere}, volume = {13}, journal = {Ecosphere}, number = {6}, doi = {10.1002/ecs2.4077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287141}, year = {2022}, abstract = {Abiotic factors are generally assumed to determine whether species can exist at the extreme ends of environmental gradients, for example, at high elevations, whereas the role of biotic interactions is less clear. On temperate mountains, insect-pollinated plant species with bilaterally symmetrical flowers exhibit a parallel elevational decline in species richness and abundance with bees. This suggests that the lack of mutualistic interaction partners sets the elevational range limits of plants via a reduction in reproductive success. We used the bee-pollinated mountain plant Clinopodium alpinum (Lamiaceae), which blooms along a continuous 1000-m elevational gradient and has bilaterally symmetrical flowers, as a model to test the predicted parallel elevational decline in flower visitation and seed production. Although the community of flower visitors changed with elevation, the flower visitation rate by the most frequent visitors, bumble bees (33.8\% of legitimate visits), and the overall rate of flower visitation by potential pollinators did not vary significantly with elevation. However, we discovered that nectar robbing by bumble bees and nectar theft by ants, two interactions with potentially negative effects on flowers, sharply increased with elevation. Seed set depended on pollinators across elevations and followed a weak hump-shaped pattern, peaking at mid-elevations and decreasing by about 20\% toward both elevational range edges. Considering the mid- and high elevations, elevational variation in seed production could not be explained by legitimate bee visitation rates but was inversely correlated with the frequency of nectar robbing. Our observations challenge the hypothesis that a decrease in the availability of pollinators limits seed production of bee-flowered plants at high elevations but suggest that an increase in negative interactions (nectar robbing and larceny) constrains reproductive success.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} } @article{FleischmannGrobRoessler2022, author = {Fleischmann, Pauline N. and Grob, Robin and R{\"o}ssler, Wolfgang}, title = {Magnetosensation during re-learning walks in desert ants (Cataglyphis nodus)}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {1}, issn = {1432-1351}, doi = {10.1007/s00359-021-01511-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266556}, pages = {125-133}, year = {2022}, abstract = {At the beginning of their foraging careers, Cataglyphis desert ants calibrate their compass systems and learn the visual panorama surrounding the nest entrance. For that, they perform well-structured initial learning walks. During rotational body movements (pirouettes), na{\"i}ve ants (novices) gaze back to the nest entrance to memorize their way back to the nest. To align their gaze directions, they rely on the geomagnetic field as a compass cue. In contrast, experienced ants (foragers) use celestial compass cues for path integration during food search. If the panorama at the nest entrance is changed, foragers perform re-learning walks prior to heading out on new foraging excursions. Here, we show that initial learning walks and re-learning walks are structurally different. During re-learning walks, foragers circle around the nest entrance before leaving the nest area to search for food. During pirouettes, they do not gaze back to the nest entrance. In addition, foragers do not use the magnetic field as a compass cue to align their gaze directions during re-learning walk pirouettes. Nevertheless, magnetic alterations during re-learning walks under manipulated panoramic conditions induce changes in nest-directed views indicating that foragers are still magnetosensitive in a cue conflict situation.}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} } @article{PietroGarciaHartmannReisslandetal.2022, author = {Pietro-Garcia, Christian and Hartmann, Oliver and Reissland, Michaela and Fischer, Thomas and Maier, Carina R. and Rosenfeldt, Mathias and Sch{\"u}lein-V{\"o}lk, Christina and Klann, Kevin and Kalb, Reinhard and Dikic, Ivan and M{\"u}nch, Christian and Diefenbacher, Markus E.}, title = {Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway}, series = {Cell Death and Differentiation}, volume = {29}, journal = {Cell Death and Differentiation}, number = {3}, issn = {1476-5403}, doi = {10.1038/s41418-021-00875-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273014}, pages = {568-584}, year = {2022}, abstract = {Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.}, language = {en} } @phdthesis{Vogel2022, author = {Vogel, Cassandra Ezra}, title = {The effects of land-use and agroecological practices on biodiversity and ecosystem services in tropical smallholder farms}, doi = {10.25972/OPUS-29066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290661}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Biodiversity is in rapid decline worldwide. These declines are more pronounced in areas that are currently biodiversity rich, but economically poor - essentially describing many tropical regions in the Global South where landscapes are dominated by smallholder agriculture. Agriculture is an important driver of biodiversity decline, through habitat destruction and unsustainable practices. Ironically, agriculture itself is dependent on a range of ecosystem services, such as pollination and pest control, provided by biodiversity. Biodiversity on fields and the delivery of ecosystem services to crops is often closely tied to the composition of the surrounding landscape - complex landscapes with a higher proportion of (semi-)natural habitats tend to support a high abundances and biodiversity of pollinators and natural enemies that are beneficial to crop production. However, past landscape scale studies have focused primarily on industrialized agricultural landscapes in the Global North, and context dependent differences between regions and agricultural systems are understudied. Smallholder agriculture supports 2 billion people worldwide and contributes to over half the world's food supply. Yet smallholders, particularly in sub-Saharan Africa, are underrepresented in research investigating the consequences of landscape change and agricultural practices. Where research in smallholder agriculture is conducted, the focus is often on commodity crops, such as cacao, and less on crops that are directly consumed by smallholder households, though the loss of services to these crops could potentially impact the most vulnerable farmers the hardest. Agroecology - a holistic and nature-based approach to agriculture, provides an alternative to unsustainable input-intensive agriculture. Agroecology has been found to benefit smallholders through improved agronomical and food-security outcomes. Co-benefits of agroecological practices with biodiversity and ecosystem services are assumed, but not often empirically tested. In addition, the local and landscape effects on biodiversity and ecosystem services are more commonly studied in isolation, but their potentially interactive effects are so far little explored. Our study region in northern Malawi exemplifies many challenges experienced by smallholder farmers throughout sub-Saharan Africa and more generally in the Global South. Malawi is located in a global biodiversity hotspot, but biodiversity is threatened by rapid habitat loss and a push for input-intensive agriculture by government and other stakeholders. In contrast, agroecology has been effectively promoted and implemented in the study region. We investigated how land-use differences and the agroecological practices affects biodiversity and ecosystem services of multiple taxa in a maize-bean intercropping system (Chapter 2), and pollination of pumpkin (Chapter 3) and pigeon pea (Chapter 4). Additionally, the effects of local and landscape scale shrub- to farmland habitat conversion was investigated on butterfly communities, as well as the potential for agroecology to mitigate these effects (Chapter 5).}, language = {en} } @article{MaihoffBohlkeBrockmannetal.2022, author = {Maihoff, Fabienne and Bohlke, Kyte and Brockmann, Axel and Schmitt, Thomas}, title = {Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0271745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301353}, year = {2022}, abstract = {Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species.}, language = {en} } @article{ReinhardHelmerichBorasetal.2022, author = {Reinhard, Sebastian and Helmerich, Dominic A. and Boras, Dominik and Sauer, Markus and Kollmannsberger, Philip}, title = {ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy}, series = {BMC Bioinformatics}, volume = {23}, journal = {BMC Bioinformatics}, number = {1}, doi = {10.1186/s12859-022-05071-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299768}, year = {2022}, abstract = {Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility.}, language = {en} } @article{WidderKelmReibetanzetal.2022, author = {Widder, Anna and Kelm, Matthias and Reibetanz, Joachim and Wiegering, Armin and Matthes, Niels and Germer, Christoph-Thomas and Seyfried, Florian and Flemming, Sven}, title = {Robotic-assisted versus laparoscopic left hemicolectomy — postoperative inflammation status, short-term outcome and cost effectiveness}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {17}, issn = {1660-4601}, doi = {10.3390/ijerph191710606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286203}, year = {2022}, abstract = {Robotic-assisted colon surgery may contain advantages over the laparoscopic approach, but clear evidence is sparse. This study aimed to analyze postoperative inflammation status, short-term outcome and cost-effectiveness of robotic-assisted versus laparoscopic left hemicolectomy. All consecutive patients who received minimal-invasive left hemicolectomy at the Department of Surgery I at the University Hospital of Wuerzburg in 2021 were prospectively included. Importantly, no patient selection for either procedure was carried out. The robotic-assisted versus laparoscopic approaches were compared head to head for postoperative short-term outcomes as well as cost-effectiveness. A total of 61 patients were included, with 26 patients having received a robotic-assisted approach. Baseline characteristics did not differ among the groups. Patients receiving a robotic-assisted approach had a significantly decreased length of hospital stay as well as lower rates of complications in comparison to patients who received laparoscopic surgery (n = 35). In addition, C-reactive protein as a marker of systemic stress response was significantly reduced postoperatively in patients who were operated on in a robotic-assisted manner. Consequently, robotic-assisted surgery could be performed in a cost-effective manner. Thus, robotic-assisted left hemicolectomy represents a safe and cost-effective procedure and might improve patient outcomes in comparison to laparoscopic surgery.}, language = {en} } @phdthesis{Wagner2022, author = {Wagner, Martin}, title = {Zyto- und Gentoxizit{\"a}t von Zinkoxid-Nanopartikeln in humanen mesenchymalen Stammzellen nach repetitiver Exposition und im Langzeitversuch}, doi = {10.25972/OPUS-27572}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Zinkoxid-Nanopartikel (ZnO-NP) finden in vielen Produkten des t{\"a}glichen Verbrauchs Verwendung. Daten {\"u}ber die toxikologischen Eigenschaften von ZnO-NP werden kontrovers diskutiert. Die menschliche Haut ist in Bezug auf die ZnO-NP Exposition das wichtigste Kontakt-Organ. Intakte Haut stellt eine suffiziente Barriere gegen{\"u}ber NP dar. Bei defekter Haut ist ein Kontakt zu den proliferierenden Stammzellen m{\"o}glich, sodass diese als wichtiges toxikologische Ziel f{\"u}r NP darstellen. Das Ziel dieser Dissertation war die Bewertung der genotoxischen und zytotoxischen Effekte an humanen mesenchymalen Stammzellen (hMSC) durch niedrig dosierte ZnO-NP nach 24 st{\"u}ndiger Exposition, repetitiven Expositionen und im Langzeitversuch bis zu 6 Wochen. Zytotoxische Wirkungen von ZnO-NP wurden mit 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid-Test (MTT) gemessen. Dar{\"u}ber hinaus wurde die Genotoxizit{\"a}t durch den Comet-Assay bewertet. Zur Langzeitbeobachtung bis zu 6 Wochen wurde die Transmissionselektronenmikroskopie (TEM) verwendet. Zytotoxizit{\"a}t nach 24-st{\"u}ndiger ZnO-NP-Exposition war ab einer Konzentration von 50 µg/ml nachweisbar. Genotoxizit{\"a}t konnten bereits bei Konzentrationen von 1 und 10 µg/ml ZnO-NP beschrieben werden. Wiederholte Exposition verst{\"a}rkte die Zyto-, aber nicht die Genotoxizit{\"a}t. Eine intrazellul{\"a}re NP-Akkumulation mit Penetration der Zellorganelle wurde bei einer Exposition bis zu 6 Wochen beobachtet. Die Ergebnisse deuten auf zytotoxische und genotoxisches Effekte von ZnO-NP hin. Bereits geringe Dosen von ZnO-NP k{\"o}nnen bei wiederholter Exposition toxische Wirkungen hervorrufen sowie eine langfristige Zellakkumulation. Diese Daten sollten bei der Verwendung von ZnO-NP an gesch{\"a}digter Haut ber{\"u}cksichtigt werden.}, subject = {nanoparticle}, language = {de} } @article{DannhaeuserMrestaniGundelachetal.2022, author = {Dannh{\"a}user, Sven and Mrestani, Achmed and Gundelach, Florian and Pauli, Martin and Komma, Fabian and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Paul, Mila M.}, title = {Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation}, series = {Frontiers in Cellular Neuroscience}, volume = {16}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2022.1074304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299440}, year = {2022}, abstract = {Introduction Neurotransmitter release at presynaptic active zones (AZs) requires concerted protein interactions within a dense 3D nano-hemisphere. Among the complex protein meshwork the (M)unc-13 family member Unc-13 of Drosophila melanogaster is essential for docking of synaptic vesicles and transmitter release. Methods We employ minos-mediated integration cassette (MiMIC)-based gene editing using GFSTF (EGFP-FlAsH-StrepII-TEV-3xFlag) to endogenously tag all annotated Drosophila Unc-13 isoforms enabling visualization of endogenous Unc-13 expression within the central and peripheral nervous system. Results and discussion Electrophysiological characterization using two-electrode voltage clamp (TEVC) reveals that evoked and spontaneous synaptic transmission remain unaffected in unc-13\(^{GFSTF}\) 3rd instar larvae and acute presynaptic homeostatic potentiation (PHP) can be induced at control levels. Furthermore, multi-color structured-illumination shows precise co-localization of Unc-13\(^{GFSTF}\), Bruchpilot, and GluRIIA-receptor subunits within the synaptic mesoscale. Localization microscopy in combination with HDBSCAN algorithms detect Unc-13\(^{GFSTF}\) subclusters that move toward the AZ center during PHP with unaltered Unc-13\(^{GFSTF}\) protein levels.}, language = {en} } @article{BazihizinaBoehmMessereretal.2022, author = {Bazihizina, Nadia and B{\"o}hm, Jennifer and Messerer, Maxim and Stigloher, Christian and M{\"u}ller, Heike M. and Cuin, Tracey Ann and Maierhofer, Tobias and Cabot, Joan and Mayer, Klaus F. X. and Fella, Christian and Huang, Shouguang and Al-Rasheid, Khaled A. S. and Alquraishi, Saleh and Breadmore, Michael and Mancuso, Stefano and Shabala, Sergey and Ache, Peter and Zhang, Heng and Zhu, Jian-Kang and Hedrich, Rainer and Scherzer, S{\"o}nke}, title = {Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa}, series = {New Phytologist}, volume = {235}, journal = {New Phytologist}, number = {5}, doi = {10.1111/nph.18205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287222}, pages = {1822 -- 1835}, year = {2022}, abstract = {Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na\(^{+}\)), chloride (Cl\(^{-}\)), potassium (K\(^{+}\)) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.}, language = {en} } @techreport{MuellerSchererLorenzenAmmeretal.2022, author = {M{\"u}ller, J{\"o}rg and Scherer-Lorenzen, Michael and Ammer, Christian and Eisenhauer, Nico and Seidel, Dominik and Schuldt, Bernhard and Biedermann, Peter and Schmitt, Thomas and K{\"u}nzer, Claudia and Wegmann, Martin and Cesarz, Simone and Peters, Marcell and Feldhaar, Heike and Steffan-Dewenter, Ingolf and Claßen, Alice and B{\"a}ssler, Claus and von Oheimb, Goddert and Fichtner, Andreas and Thorn, Simon and Weisser, Wolfgang}, title = {BETA-FOR: Erh{\"o}hung der strukturellen Diversit{\"a}t zwischen Waldbest{\"a}nden zur Erh{\"o}hung der Multidiversit{\"a}t und Multifunktionalit{\"a}t in Produktionsw{\"a}ldern. Antragstext f{\"u}r die DFG Forschungsgruppe FOR 5375}, doi = {10.25972/OPUS-29084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290849}, pages = {210}, year = {2022}, abstract = {Der in j{\"u}ngster Zeit beobachtete kontinuierliche Verlust der β-Diversit{\"a}t in {\"O}kosystemen deutet auf homogene Gemeinschaften auf Landschaftsebene hin, was haupts{\"a}chlich auf die steigende Landnutzungsintensit{\"a}t zur{\"u}ckgef{\"u}hrt wird. Biologische Vielfalt ist mit zahlreichen Funktionen und der Stabilit{\"a}t von {\"O}kosystemen verkn{\"u}pft. Es ist daher zu erwarten, dass eine abnehmende β-Diversit{\"a}t auch die Multifunktionalit{\"a}t verringert. Wir kombinieren hier Fachwissen aus der Forstwissenschaft, der {\"O}kologie, der Fernerkundung, der chemischen {\"O}kologie und der Statistik in einem gemeinschaftlichen und experimentellen β-Diversit{\"a}tsdesign, um einerseits die Auswirkungen der Homogenisierung zu bewerten und andererseits Konzepte zu entwickeln, um negative Auswirkungen durch Homogenisierung in W{\"a}ldern r{\"u}ckg{\"a}ngig zu machen. Konkret werden wir uns mit der Frage besch{\"a}ftigen, ob die Verbesserung der strukturellen β-Komplexit{\"a}t (ESBC) in W{\"a}ldern durch Waldbau oder nat{\"u}rliche St{\"o}rungen die Biodiversit{\"a}t und Multifunktionalit{\"a}t in ehemals homogenen Produktionsw{\"a}ldern erh{\"o}hen kann. Unser Ansatz wird m{\"o}gliche Mechanismen hinter den beobachteten Homogenisierungs-Diversit{\"a}ts-Beziehungen identifizieren und zeigen, wie sich diese auf die Multifunktionalit{\"a}t auswirken. An elf Standorten in ganz Deutschland haben wir dazu zwei Waldbest{\"a}nde als zwei kleine "Waldlandschaften" ausgew{\"a}hlt. In einem dieser beiden Best{\"a}nde haben wir ESBC (Enhancement of Structural Beta Complexity)-Behandlungen durchgef{\"u}hrt. Im zweiten, dem Kontrollbestand, werden wir die gleich Anzahl 50x50m Parzellen ohne ESBC einrichten. Auf allen Parzellen werden wir 18 taxonomische Artengruppen aller trophischer Ebenen und 21 {\"O}kosystemfunktionen, einschließlich der wichtigsten Funktionen in W{\"a}ldern der gem{\"a}ßigten Zonen, messen. Der statistische Rahmen wird eine umfassende Analyse der Biodiversit{\"a}t erm{\"o}glichen, indem verschiedenen Aspekte (taxonomische, funktionelle und phylogenetische Vielfalt) auf verschiedenen Skalenebenen (α-, β-, γ-Diversit{\"a}t) quantifiziert werden. Um die Gesamtdiversit{\"a}t zu kombinieren, werden wir das Konzept der Multidiversit{\"a}t auf die 18 Taxa anwenden. Wir werden neue Ans{\"a}tze zur Quantifizierung und Aufteilung der Multifunktionalit{\"a}t auf α- und β-Skalen verwenden und entwickeln. Durch die experimentelle Beschreibung des Zusammenhangs zwischen β-Diversit{\"a}t und Multifunktionalit{\"a}t in einer Reallandschaft wird unsere Forschung einen neuen Weg einschlagen. Dar{\"u}ber hinaus werden wir dazu beitragen, verbesserte Leitlinien f{\"u}r waldbauliche Konzepte und f{\"u}r das Management nat{\"u}rlicher St{\"o}rungen zu entwickeln, um Homogenisierungseffekte der Vergangenheit umzukehren.}, subject = {Wald{\"o}kosystem}, language = {en} } @article{DiersBaumLehmannetal.2022, author = {Diers, Johannes and Baum, Philip and Lehmann, Kai and Uttinger, Konstatin and Baumann, Nikolas and Pietryga, Sebastian and Hankir, Mohammed and Matthes, Niels and Lock, Johann F. and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Disproportionately high failure to rescue rates after resection for colorectal cancer in the geriatric patient population - A nationwide study}, series = {Cancer Medicine}, volume = {11}, journal = {Cancer Medicine}, number = {22}, doi = {10.1002/cam4.4784}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312858}, pages = {4256-4264}, year = {2022}, abstract = {Background Colorectal cancer incidence increases with patient age. The aim of this study was to assess, at the nationwide level, in-hospital mortality, and failure to rescue in geriatric patients (≥ 80 years old) with colorectal cancer arising from postoperative complications. Methods All patients receiving surgery for colorectal cancer in Germany between 2012 and 2018 were identified in a nationwide database. Association between age and in-hospital mortality following surgery and failure to rescue, defined as death after complication, were determined in univariate and multivariate analyses. Results Three lakh twenty-eight thousands two hundred and ninety patients with colorectal cancer were included of whom 77,287 were 80 years or older. With increasing age, a significant relative increase in right hemicolectomy was observed. In general, these patients had more comorbid conditions and higher frailty. In-hospital mortality following colorectal cancer surgery was 4.9\% but geriatric patients displayed a significantly higher postoperative in-hospital mortality of 10.6\%. The overall postoperative complication rate as well as failure to rescue increased with age. In contrast, surgical site infection (SSI) and anastomotic leakage (AL) did not increase in geriatric patients, whereas the associated mortality increased disproportionately (13.3\% for SSI and 29.9\% mortality for patients with AI, both p < 0.001). Logistic regression analysis adjusting for confounders showed that geriatric patients had almost five-times higher odds for death after surgery than the baseline age group below 60 (OR 4.86; 95\%CI [4.45-5.53], p < 0.001). Conclusion Geriatric patients have higher mortality after colorectal cancer surgery. This may be partly due to higher frailty and disproportionately higher rates of failure to rescue arising from postoperative complications.}, language = {en} } @article{UttingerRiedmeierReibetanzetal.2022, author = {Uttinger, Konstantin L. and Riedmeier, Maria and Reibetanz, Joachim and Meyer, Thomas and Germer, Christoph Thomas and Fassnacht, Martin and Wiegering, Armin and Wiegering, Verena}, title = {Adrenalectomies in children and adolescents in Germany - a diagnose related groups based analysis from 2009-2017}, series = {Frontiers in Endocrinology}, volume = {13}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2022.914449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282280}, year = {2022}, abstract = {Background Adrenalectomies are rare procedures especially in childhood. So far, no large cohort study on this topic has been published with data on to age distribution, operative procedures, hospital volume and operative outcome. Methods This is a retrospective analysis of anonymized nationwide hospital billing data (DRG data, 2009-2017). All adrenal surgeries (defined by OPS codes) of patients between the age 0 and 21 years in Germany were included. Results A total of 523 patient records were identified. The mean age was 8.6 ± 7.7 years and 262 patients were female (50.1\%). The majority of patients were between 0 and 5 years old (52\% overall), while 11.1\% were between 6 and 11 and 38.8\% older than 12 years. The most common diagnoses were malignant neoplasms of the adrenal gland (56\%, mostly neuroblastoma) with the majority being younger than 5 years. Benign neoplasms in the adrenal gland (D350) account for 29\% of all cases with the majority of affected patients being 12 years or older. 15\% were not defined regarding tumor behavior. Overall complication rate was 27\% with a clear higher complication rate in resection for malignant neoplasia of the adrenal gland. Bleeding occurrence and transfusions are the main complications, followed by the necessary of relaparotomy. There was an uneven patient distribution between hospital tertiles (low volume, medium and high volume tertile). While 164 patients received surgery in 85 different "low volume" hospitals (0.2 cases per hospital per year), 205 patients received surgery in 8 different "high volume" hospitals (2.8 cases per hospital per year; p<0.001). Patients in high volume centers were significant younger, had more extended resections and more often malignant neoplasia. In multivariable analysis younger age, extended resections and open procedures were independent predictors for occurrence of postoperative complications. Conclusion Overall complication rate of adrenalectomies in the pediatric population in Germany is low, demonstrating good therapeutic quality. Our analysis revealed a very uneven distribution of patient volume among hospitals.}, language = {en} } @article{DiersAcarWagneretal.2022, author = {Diers, Johannes and Acar, Laura and Wagner, Johanna C. and Baum, Philip and Hankir, Mohammed and Flemming, Sven and Kastner, Carolin and Germer, Christoph-Thomas and L'hoest, Helmut and Marschall, Ursula and Lock, Johan Friso and Wiegering, Armin}, title = {Cancer diagnosis is one quarter lower than the expected cancer incidence in the first year of COVID-19 pandemic in Germany: A retrospective register-based cohort study}, series = {Cancer Communications}, volume = {42}, journal = {Cancer Communications}, number = {7}, doi = {10.1002/cac2.12314}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312862}, pages = {673-676}, year = {2022}, abstract = {No abstract available.}, language = {en} } @phdthesis{Fricke2022, author = {Fricke, Ute}, title = {Herbivory, predation and pest control in the context of climate and land use}, doi = {10.25972/OPUS-28732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Chapter 1 - General introduction Anthropogenic land-use and climate change are the major drivers of the global biodiversity loss. Yet, biodiversity is essential for human well-being, as we depend on the availability of potable water, sufficient food and further benefits obtained from nature. Each species makes a somewhat unique contribution to these ecosystem services. Furthermore, species tolerate environmental stressors, such as climate change, differently. Thus, biodiversity is both the "engine" and the "insurance" for human well-being in a changing climate. Here, I investigate the effects of temperature and land use on herbivory (Chapter 2), predation (Chapter 3) and pest control (Chapter 4), and at the same time identify features of habitats (e.g. plant richness, proximity to different habitat types) and landscapes (e.g. landscape diversity, proportion of oilseed rape area) as potential management targets in an adaptation strategy to climate change. Finally, I discuss the similarities and differences between factors influencing herbivory, predation and pest control, while placing the observations in the context of climate change as a multifaceted phenomenon, and highlighting starting points for sustainable insect pest management (Chapter 5). Chapter 2 - Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on major plant functional groups Invertebrate herbivores are temperature-sensitive. Rising temperatures increase their metabolic rates and thus their demand for carbon-rich relative to protein-rich resources, which can lead to changes in the diets of generalist herbivores. Here, we quantified leaf-area loss to chewing invertebrates among three plant functional groups (legumes, non-leguminous forbs and grasses), which largely differ in C:N (carbon:nitrogen) ratio. This reseach was conducted along spatial temperature and land-use gradients in open herbaceous vegetation adjacent to different habitat types (forest, grassland, arable field, settlement). Herbivory largely differed among plant functional groups and was higher on legumes than forbs and grasses, except in open areas in forests. There, herbivory was similar among plant functional groups and on legumes lower than in grasslands. Also the presence of many plant families lowered herbivory on legumes. This suggests that open areas in forests and diverse vegetation provide certain protection against leaf damage to some plant families (e.g. legumes). This could be used as part of a conservation strategy for protected species. Overall, the effects of the dominant habitat type in the vicinity and diverse vegetation outweighed those of temperature and large-scale land use (e.g. grassland proportion, landscape diversity) on herbivory of legumes, forbs and grasses at the present time. Chapter 3 - Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types Herbivorous insects underlie top-down regulation by arthropod predators. Thereby, predation rates depend on predator community composition and behaviour, which is shaped by temperature, plant richness and land use. How the interaction of these factors affects the regulatory performance of predators was unknown. Therefore, we assessed arthropod predation rates on artificial caterpillars along temperature, and land-use gradients. On plots with low local mean temperature (≤ 7°C) often not a single caterpillar was attacked, which may be due to the temperature-dependent inactivity of arthropods. However, multi-annual mean temperature, plant richness and the dominant habitat type in the vicinity did not substantially affect arthropod predation rates. Highest arthropod predation rates were observed in diverse landscapes (2-km scale) independently of the locally dominanting habitat type. As landscape diversity, but not multi-annual mean temperature, affected arthropod predation rates, the diversification of landscapes may also support top-down regulation of herbivores independent of moderate increases of multi-annual mean temperature in the near future. Chapter 4 - Pest control and yield of winter oilseed rape depend on spatiotemporal crop-cover dynamics and flowering onset: implications for global warming Winter oilseed rape is an important oilseed crop in Europe, yet its seed yield is diminished through pests such as the pollen beetle and stem weevils. Damage from pollen beetles depends on pest abundances, but also on the timing of infestation relative to crop development as the bud stage is particularly vulnerable. The development of both oilseed rape and pollen beetles is temperature-dependent, while temperature effects on pest abundances are yet unknown, which brings opportunities and dangers to oilseed rape cropping under increased temperatures. We obtained measures of winter oilseed rape (flowering time, seed yield) and two of its major pests (pollen beetle, stem weevils) for the first time along both land-use and temperature gradients. Infestation with stem weevils was not influenced by any temperature or land-use aspect considered, and natural pest regulation of pollen beetles in terms of parasitism rates of pollen beetle larvae was low (< 30\%), except on three out of 29 plots. Nonetheless, we could identify conditions favouring low pollen beetle abundances per plant and high seed yields. Low pollen beetle densities were favoured by a constant oilseed rape area relative to the preceding year (5-km scale), whereas a strong reduction in area (> 40\%) caused high pest densities (concentration effect). This occurred more frequently in warmer regions, due to drought around sowing, which contributed to increased pollen beetle numbers in those regions. Yet, in warmer regions, oilseed rape flowered early, which possibly led to partial escape from pollen beetle infestation in the most vulnerable bud stage. This is also suggested by higher seed yields of early flowering oilseed rape fields, but not per se at higher temperatures. Thus, early flowering (e.g. cultivar selection) and the interannual coordination of oilseed rape area offer opportunities for environmental-friendly pollen beetle management. Chapter 5 - General discussion Anthropogenic land-use and climate change are major threats to biodiversity, and consequently to ecosystem functions, although I could show that ecosystem functions such as herbivory and predation barely responded to temperature along a spatial gradient at present time. Yet, it is important to keep several points in mind: (i) The high rate of climate warming likely reduces the time that species will have to adapt to temperature in the future; (ii) Beyond mean temperatures, many aspects of climate will change; (iii) The compensation of biodiversity loss through functional redundancy in arthropod communities may be depleted at some point; (iv) Measures of ecosystem functions are limited by methodological filters, so that changes may be captured incompletely. Although much uncertainty of the effects of climate and land-use change on ecosystem functions remains, actions to halt biodiversity loss and to interfere with natural processes in an environmentally friendly way, e.g. reduction of herbivory on crops, are urgently needed. With this thesis, I contribute options to the environment-friendly regulation of herbivory, which are at least to some extent climate resilient, and at the same time make a contribution to halt biodiversity loss. Yet, more research and a transformation process is needed to make human action more sustainable. In terms of crop protection, this means that the most common method of treating pests with fast-acting pesticides is not necessarily the most sustainable. To realize sustainable strategies, collective efforts will be needed targeted at crop damage prevention through reducing pest populations and densities in the medium to long term. The sooner we transform human action from environmentally damaging to biodiversity promoting, the higher is our insurance asset that secures human well-being under a changing climate.}, subject = {{\"O}kologie}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @techreport{Gross2022, author = {Groß, Lennart}, title = {Advices derived from troubleshooting a sensor-based adaptive optics direct stochastic optical reconstruction microscope}, doi = {10.25972/OPUS-28995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289951}, pages = {20}, year = {2022}, abstract = {One rarely finds practical guidelines for the implementation of complex optical setups. Here, we aim to provide technical details on the decision making of building and revising a custom sensor-based adaptive optics (AO) direct stochastic optical reconstruction microscope (dSTORM) to provide practical assistance in setting up or troubleshooting similar devices. The foundation of this report is an instrument constructed as part of a master's thesis in 2021, which was built for deep tissue imaging. The setup is presented in the following way: (1) An optical and mechanical overview of the system at the beginning of this internship is given. (2) The optical components are described in detail in the order at which the light passes through, highlighting their working principle and implementation in the system. The optical component include (2A) a focus on even sample illumination, (2B) restoring telecentricity when working with commercial microscope bodies, (2C) the AO elements, namely the deformable mirror (DM) and the wavefront sensor, and their integration, and (2D) the separation of wavefront and image capture using fluorescent beads and a dichroic mirror. After addressing the limitations of the existing setup, modification options are derived. The modifications include the implementation of adjustment only light paths to improve system stability and revise the degrees of freedom of the components and changes in lens choices to meet the specifications of the AO components. Last, the capabilities of the modified setup are presented and discussed: (1) First, we enable epifluorescence imaging of bead samples through 180 µm unstained murine hippocampal tissue with wavefront error correction of ~ 90 \%. Point spread function, wavefront shape and Zernike decomposition of bead samples are presented. (2) Second, we move from epifluorescent to dSTORM imaging of tubulin stained primary mouse hippocampal cells, which are imaged through up to 180 µm of unstained murine hippocampal tissue. We show that full width at half maximum (FWHM) of prominent features can be reduced in size by nearly a magnitude from uncorrected epiflourescence images to dSTORM images corrected by the adaptive optics. We present dSTORM localization count and FWHM of prominent features as as a function of imaging depth.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @article{RohmerDobritzTuncbilekDereetal.2022, author = {Rohmer, Carina and Dobritz, Ronja and Tuncbilek-Dere, Dilek and Lehmann, Esther and Gerlach, David and George, Shilpa Elizabeth and Bae, Taeok and Nieselt, Kay and Wolz, Christiane}, title = {Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {11}, issn = {1999-4915}, doi = {10.3390/v14112471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297209}, year = {2022}, abstract = {Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.}, language = {en} } @article{KoehlerReeseHendricksetal.2022, author = {K{\"o}hler, Franziska and Reese, Lena and Hendricks, Anne and Kastner, Carolin and M{\"u}ller, Sophie and Lock, Johan F. and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Low-grade mucinous neoplasms (LAMN) of the appendix in Germany between 2011 and 2018: a nationwide analysis based on data provided by the German Center for Cancer Registry Data (ZfKD) at the Robert Koch Institute (RKI)}, series = {Langenbeck's Archives of Surgery}, volume = {407}, journal = {Langenbeck's Archives of Surgery}, number = {8}, doi = {10.1007/s00423-022-02639-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323919}, pages = {3615-3622}, year = {2022}, abstract = {Introduction Low-grade appendiceal mucinous neoplasms (LAMN) are semi-malignant tumors of the appendix which are incidentally found in up to 1\% of appendectomy specimen. To this day, no valid descriptive analysis on LAMN is available for the German population. Methods Data of LAMN (ICD-10: D37.3) were collected from the population-based cancer registries in Germany, provided by the German Center for Cancer Registry Data (Zentrum f{\"u}r Krebsregisterdaten—ZfKD). Data was anonymized and included gender, age at diagnosis, tumor staging according to the TNM-classification, state of residence, information on the performed therapy, and survival data. Results A total of 612 cases were reported to the ZfKD between 2011 and 2018. A total of 63.07\% were female and 36.93\% were male. Great inhomogeneity in reporting cases was seen in the federal states of Germany including the fact that some federal states did not report any cases at all. Age distribution showed a mean age of 62.03 years (SD 16.15) at diagnosis. However, data on tumor stage was only available in 24.86\% of cases (n = 152). A total of 49.34\% of these patients presented with a T4-stage. Likewise, information regarding performed therapy was available in the minority of patients: 269 patients received surgery, 22 did not and for 312 cases no information was available. Twenty-four patients received chemotherapy, 188 did not, and for 400 cases, no information was available. Overall 5-year survival was estimated at 79.52\%. Patients below the age of 55 years at time of diagnosis had a significantly higher 5-year survival rate compared to patients above the age of 55 years (85.77\% vs. 73.27\%). Discussion In this study, we observed an incidence of LAMN in 0.13\% of all appendectomy specimen in 2018. It seems likely that not all cases were reported to the ZfKD; therefore, case numbers may be considered underestimated. Age and gender distribution goes in line with international studies with females being predominantly affected. Especially regarding tumor stage and therapy in depth information cannot be provided through the ZfKD-database. This data analysis emphasizes the need for further studies and the need for setting up a specialized registry for this unique tumor entity to develop guidelines for the appropriate treatment and follow-up.}, language = {en} } @article{ReibetanzKelmUttingeretal.2022, author = {Reibetanz, Joachim and Kelm, Matthias and Uttinger, Konstantin L. and Reuter, Miriam and Schlegel, Nicolas and Hankir, Mohamed and Wiegering, Verena and Germer, Christoph-Thomas and Fassnacht, Martin and Lock, Johan Friso and Wiegering, Armin}, title = {Differences in morbidity and mortality between unilateral adrenalectomy for adrenal Cushing's syndrome and bilateral adrenalectomy for therapy refractory extra-adrenal Cushing's syndrome}, series = {Langenbeck's Archives of Surgery}, volume = {407}, journal = {Langenbeck's Archives of Surgery}, number = {6}, doi = {10.1007/s00423-022-02568-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323947}, pages = {2481-2488}, year = {2022}, abstract = {Purpose In selected cases of severe Cushing's syndrome due to uncontrolled ACTH secretion, bilateral adrenalectomy appears unavoidable. Compared with unilateral adrenalectomy (for adrenal Cushing's syndrome), bilateral adrenalectomy has a perceived higher perioperative morbidity. The aim of the current study was to compare both interventions in endogenous Cushing's syndrome regarding postoperative outcomes. Methods We report a single-center, retrospective cohort study comparing patients with hypercortisolism undergoing bilateral vs. unilateral adrenalectomy during 2008-2021. Patients with adrenal Cushing's syndrome due to adenoma were compared with patients with ACTH-dependent Cushing's syndrome (Cushing's disease and ectopic ACTH production) focusing on postoperative morbidity and mortality as well as long-term survival. Results Of 83 patients with adrenalectomy for hypercortisolism (65.1\% female, median age 53 years), the indication for adrenalectomy was due to adrenal Cushing's syndrome in 60 patients (72.2\%; 59 unilateral and one bilateral), and due to hypercortisolism caused by Cushing's disease (n = 16) or non-pituitary uncontrolled ACTH secretion of unknown origin (n = 7) (27.7\% of all adrenalectomies). Compared with unilateral adrenalectomy (n = 59), patients with bilateral adrenalectomy (n = 24) had a higher rate of severe complications (0\% vs. 33\%; p < 0.001) and delayed recovery (median: 10.2\% vs. 79.2\%; p < 0.001). Using the MTL30 marker, patients with bilateral adrenalectomy fared worse than patients after unilateral surgery (MTL30 positive: 7.2\% vs. 25.0\% p < 0.001). Postoperative mortality was increased in patients with bilateral adrenalectomy (0\% vs. 8.3\%; p = 0.081). Conclusion While unilateral adrenalectomy for adrenal Cushing's syndrome represents a safe and definitive therapeutic option, bilateral adrenalectomy to control ACTH-dependent extra-adrenal Cushing's syndrome or Cushing's disease is a more complicated intervention with a mortality of nearly 10\%.}, language = {en} } @article{BroschKorsaTabanetal.2022, author = {Brosch, Philippa K. and Korsa, Tessa and Taban, Danush and Eiring, Patrick and Hildebrand, Sascha and Neubauer, Julia and Zimmermann, Heiko and Sauer, Markus and Shirakashi, Ryo and Djuzenova, Cholpon S. and Sisario, Dmitri and Sukhorukov, Vladimir L.}, title = {Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {23}, issn = {2072-6694}, doi = {10.3390/cancers14235794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297498}, year = {2022}, abstract = {(1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment.}, language = {en} } @article{RoemerAguilarMeyeretal.2022, author = {R{\"o}mer, Daniela and Aguilar, Gonzalo Pacheco and Meyer, Annika and Roces, Flavio}, title = {Symbiont demand guides resource supply: leaf-cutting ants preferentially deliver their harvested fragments to undernourished fungus gardens}, series = {The Science of Nature}, volume = {109}, journal = {The Science of Nature}, number = {3}, doi = {10.1007/s00114-022-01797-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325080}, year = {2022}, abstract = {Leaf-cutting ants are highly successful herbivores in the Neotropics. They forage large amounts of fresh plant material to nourish a symbiotic fungus that sustains the colony. It is unknown how workers organize the intra-nest distribution of resources, and whether they respond to increasing demands in some fungus gardens by adjusting the amount of delivered resources accordingly. In laboratory experiments, we analyzed the spatial distribution of collected leaf fragments among nest chambers in Acromyrmex ambiguus leaf-cutting ants, and how it changed when one of the fungus gardens experienced undernourishment. Plant fragments were evenly distributed among nest chambers when the fungal symbiont was well nourished. That pattern changed when one of the fungus gardens was undernourished and had a higher leaf demand, resulting in more leaf discs delivered to the undernourished fungus garden over at least 2 days after deprivation. Some ants bypassed nourished gardens to directly deliver their resource to the chamber with higher nutritional demand. We hypothesize that cues arising from that chamber might be used for orientation and/or that informed individuals, presumably stemming from the undernourished chamber, may preferentially orient to them.}, language = {en} } @article{FrickeRedlichZhangetal.2022, author = {Fricke, Ute and Redlich, Sarah and Zhang, Jie and Tobisch, Cynthia and Rojas-Botero, Sandra and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Riebl, Rebekka and Uhler, Johannes and Uphus, Lars and Ewald, J{\"o}rg and Kollmann, Johannes and Steffan-Dewenter, Ingolf}, title = {Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups}, series = {Oecologia}, volume = {199}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-022-05199-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325079}, pages = {407-417}, year = {2022}, abstract = {Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates ('herbivory') in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4-18.8 °C), multi-annual mean temperature (range 6.5-10.0 °C), local plant richness (species and family level, ranges 10-51 species, 5-25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2-3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature—except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses.}, language = {en} } @article{ZupancRoessler2022, author = {Zupanc, G{\"u}nther K. H. and R{\"o}ssler, Wolfgang}, title = {Government funding of research beyond biomedicine: challenges and opportunities for neuroethology}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {3}, doi = {10.1007/s00359-022-01552-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325113}, pages = {443-456}, year = {2022}, abstract = {Curiosity-driven research is fundamental for neuroethology and depends crucially on governmental funding. Here, we highlight similarities and differences in funding of curiosity-driven research across countries by comparing two major funding agencies—the National Science Foundation (NSF) in the United States and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). We interviewed representatives from each of the two agencies, focusing on general funding trends, levels of young investigator support, career-life balance, and international collaborations. While our analysis revealed a negative trend in NSF funding of biological research, including curiosity-driven research, German researchers in these areas have benefited from a robust positive trend in DFG funding. The main reason for the decrease in curiosity-driven research in the US is that the NSF has only partially been able to compensate for the funding gap resulting from the National Institutes of Health restricting their support to biomedical research using select model organisms. Notwithstanding some differences in funding programs, particularly those relevant for scientists in the postdoctoral phase, both the NSF and DFG clearly support curiosity-driven research.}, language = {en} } @article{DedukhDaCruzKneitzetal.2022, author = {Dedukh, Dmitrij and Da Cruz, Irene and Kneitz, Susanne and Marta, Anatolie and Ormanns, Jenny and Tichop{\´a}d, Tom{\´a}š and Lu, Yuan and Alsheimer, Manfred and Janko, Karel and Schartl, Manfred}, title = {Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa}, series = {Chromosome Research}, volume = {30}, journal = {Chromosome Research}, number = {4}, doi = {10.1007/s10577-022-09708-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325128}, pages = {443-457}, year = {2022}, abstract = {Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.}, language = {en} } @article{GrafLettenmaierMuelleretal.2022, author = {Graf, Marlene and Lettenmaier, Ludwig and M{\"u}ller, J{\"o}rg and Hagge, Jonas}, title = {Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12534}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262507}, pages = {48 -- 60}, year = {2022}, abstract = {Deadwood provides a variety of habitats for saproxylic beetles. Whereas the understanding of the drivers promoting saproxylic beetle diversity has improved, the process of deadwood colonisation and beetle's potential to trace resources is poorly understood. However, the mechanisms facilitating deadwood detection by saproxylic beetles appears to be essential for survival, as deadwood is usually scattered in time and space. To investigate whether saproxylic beetles distinguish before their arrival on potential hosts between alive trees and deadwood (lying, stumps, standing), deadwood arrangement (aggregated, distributed) and different heights on standing resources (bottom = 0.5 m, middle = 4-5 m, top = 7.30-11.60 m), we sampled saproxylic beetles with sticky traps in a deadwood experiment. We found on average 67\% higher abundance, 100\% higher species numbers and 50-130\% higher species diversity of colonising saproxylic beetles consistently for all deadwood types compared to alive trees with a distinct community composition on lying deadwood compared to the other resource types. Aggregated deadwood arrangement, which is associated with higher sun-exposure, had a positive effect on species richness. The abundance, species number and diversity, was significantly higher for standing deadwood and alive trees at the bottom section of tree trunks. In contrast to living trees, however, the vertical position had an additional effect on the community composition on standing deadwood. Our results indicate that saproxylic beetles are attracted to potential deadwood habitats and actively select specific trunk sections before arriving on potential hosts. Furthermore, this study highlights the importance of sun-exposed resources for species richness in saproxylic beetles.}, language = {en} } @article{PrietoGarciaHartmannReisslandetal.2022, author = {Prieto-Garcia, Cristian and Hartmann, Oliver and Reissland, Michaela and Braun, Fabian and Bozkurt, S{\"u}leyman and Pahor, Nikolett and Fuss, Carmina and Schirbel, Andreas and Sch{\"u}lein-V{\"o}lk, Christina and Buchberger, Alexander and Calzado Canale, Marco A. and Rosenfeldt, Mathias and Dikic, Ivan and M{\"u}nch, Christian and Diefenbacher, Markus E.}, title = {USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K}, series = {Molecular Oncology}, volume = {16}, journal = {Molecular Oncology}, number = {17}, doi = {10.1002/1878-0261.13217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312777}, pages = {3082-3106}, year = {2022}, abstract = {Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto-oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl-terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes such as c-JUN, c-MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small-molecule inhibitor resets the proteome of transformed cells towards a 'premalignant' state, and its inhibition synergizes with clinically established compounds used to target EGFR\(^{L858R}\)-, BRAF\(^{V600E}\)- or PI3K\(^{H1047R}\)-driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early-stage lung tumours, and the observed synergism with current standard-of-care inhibitors holds the potential for improved targeting of established tumours.}, language = {en} } @article{ViljurAbellaAdameketal.2022, author = {Viljur, Mari-Liis and Abella, Scott R. and Ad{\´a}mek, Martin and Alencar, Janderson Batista Rodrigues and Barber, Nicholas A. and Beudert, Burkhard and Burkle, Laura A. and Cagnolo, Luciano and Campos, Brent R. and Chao, Anne and Chergui, Brahim and Choi, Chang-Yong and Cleary, Daniel F. R. and Davis, Thomas Seth and Dechnik-V{\´a}zquez, Yanus A. and Downing, William M. and Fuentes-Ramirez, Andr{\´e}s and Gandhi, Kamal J. K. and Gehring, Catherine and Georgiev, Kostadin B. and Gimbutas, Mark and Gongalsky, Konstantin B. and Gorbunova, Anastasiya Y. and Greenberg, Cathryn H. and Hylander, Kristoffer and Jules, Erik S. and Korobushkin, Daniil I. and K{\"o}ster, Kajar and Kurth, Valerie and Lanham, Joseph Drew and Lazarina, Maria and Leverkus, Alexandro B. and Lindenmayer, David and Marra, Daniel Magnabosco and Mart{\´i}n-Pinto, Pablo and Meave, Jorge A. and Moretti, Marco and Nam, Hyun-Young and Obrist, Martin K. and Petanidou, Theodora and Pons, Pere and Potts, Simon G. and Rapoport, Irina B. and Rhoades, Paul R. and Richter, Clark and Saifutdinov, Ruslan A. and Sanders, Nathan J. and Santos, Xavier and Steel, Zachary and Tavella, Julia and Wendenburg, Clara and Wermelinger, Beat and Zaitsev, Andrey S. and Thorn, Simon}, title = {The effect of natural disturbances on forest biodiversity: an ecological synthesis}, series = {Biological Reviews}, volume = {97}, journal = {Biological Reviews}, number = {5}, doi = {10.1111/brv.12876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287168}, pages = {1930 -- 1947}, year = {2022}, abstract = {Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55\% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{FathySaadEldinNaseemetal.2022, author = {Fathy, Moustafa and Saad Eldin, Sahar M. and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Cytokinins: wide-spread signaling hormones from plants to humans with high medical potential}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {7}, issn = {2072-6643}, doi = {10.3390/nu14071495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271017}, year = {2022}, abstract = {Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications.}, language = {en} } @article{KayaZeebDelacWolfetal.2022, author = {Kaya-Zeeb, Sinan and Delac, Saskia and Wolf, Lena and Marante, Ana Luiza and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Robustness of the honeybee neuro-muscular octopaminergic system in the face of cold stress}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.1002740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288753}, year = {2022}, abstract = {In recent decades, our planet has undergone dramatic environmental changes resulting in the loss of numerous species. This contrasts with species that can adapt quickly to rapidly changing ambient conditions, which require physiological plasticity and must occur rapidly. The Western honeybee (Apis mellifera) apparently meets this challenge with remarkable success, as this species is adapted to numerous climates, resulting in an almost worldwide distribution. Here, coordinated individual thermoregulatory activities ensure survival at the colony level and thus the transmission of genetic material. Recently, we showed that shivering thermogenesis, which is critical for honeybee thermoregulation, depends on octopamine signaling. In this study, we tested the hypothesis that the thoracic neuro-muscular octopaminergic system strives for a steady-state equilibrium under cold stress to maintain endogenous thermogenesis. We can show that this applies for both, octopamine provision by flight muscle innervating neurons and octopamine receptor expression in the flight muscles. Additionally, we discovered alternative splicing for AmOARβ2. At least the expression of one isoform is needed to survive cold stress conditions. We assume that the thoracic neuro-muscular octopaminergic system is finely tuned in order to contribute decisively to survival in a changing environment.}, language = {en} } @article{NguyenBeetzMerlinetal.2022, author = {Nguyen, Tu Anh Thi and Beetz, M. Jerome and Merlin, Christine and Pfeiffer, Keram and el Jundi, Basil}, title = {Weighting of celestial and terrestrial cues in the monarch butterfly central complex}, series = {Frontiers in Neural Circuits}, volume = {16}, journal = {Frontiers in Neural Circuits}, issn = {1662-5110}, doi = {10.3389/fncir.2022.862279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279445}, year = {2022}, abstract = {Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.}, language = {en} } @article{VansynghelOcampoArizaMaasetal.2022, author = {Vansynghel, Justine and Ocampo-Ariza, Carolina and Maas, Bea and Martin, Emily A. and Thomas, Evert and Hanf-Dressler, Tara and Schumacher, Nils-Christian and Ulloque-Samatelo, Carlos and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores}, series = {Ecological Solutions and Evidence}, volume = {3}, journal = {Ecological Solutions and Evidence}, number = {2}, issn = {2688-8319}, doi = {10.1002/2688-8319.12140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312722}, year = {2022}, abstract = {1. Pollination services of cacao are crucial for global chocolate production, yet remain critically understudied, particularly in regions of origin of the species. Notably, uncertainties remain concerning the identity of cacao pollinators, the influence of landscape (forest distance) and management (shade cover) on flower visitation and the role of pollen deposition in limiting fruit set. 2. Here, we aimed to improve understanding of cacao pollination by studying limiting factors of fruit set in Peru, part of the centre of origin of cacao. Flower visitors were sampled with sticky insect glue in 20 cacao agroforests in two biogeographically distinct regions of Peru, across gradients of shade cover and forest distance. Further, we assessed pollen quantities and compared fruit set between naturally and manually pollinated flowers. 3. The most abundant flower visitors were aphids, ants and thrips in the north and thrips, midges and parasitoid wasps in the south of Peru. We present some evidence of increasing visitation rates from medium to high shade (40\%-95\% canopy closure) in the dry north, and opposite patterns in the semi-humid south, during the wet season. 4. Natural pollination resulted in remarkably low fruit set rates (2\%), and very low pollen deposition. After hand pollination, fruit set more than tripled (7\%), but was still low. 5. The diversity and high relative abundances of herbivore flower visitors limit our ability to draw conclusions on the functional role of different flower visitors. The remarkably low fruit set of naturally and even hand pollinated flowers indicates that other unaddressed factors limit cacao fruit production. Such factors could be, amongst others, a lack of effective pollinators, genetic incompatibility or resource limitation. Revealing efficient pollinator species and other causes of low fruit set rates is therefore key to establish location-specific management strategies and develop high yielding native cacao agroforestry systems in regions of origin of cacao}, language = {en} } @article{BaeMuellerFoersteretal.2022, author = {Bae, Soyeon and M{\"u}ller, J{\"o}rg and F{\"o}rster, Bernhard and Hilmers, Torben and Hochrein, Sophia and Jacobs, Martin and Leroy, Benjamin M. L. and Pretzsch, Hans and Weisser, Wolfgang W. and Mitesser, Oliver}, title = {Tracking the temporal dynamics of insect defoliation by high-resolution radar satellite data}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {1}, doi = {10.1111/2041-210X.13726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258222}, pages = {121-132}, year = {2022}, abstract = {Quantifying tree defoliation by insects over large areas is a major challenge in forest management, but it is essential in ecosystem assessments of disturbance and resistance against herbivory. However, the trajectory from leaf-flush to insect defoliation to refoliation in broadleaf trees is highly variable. Its tracking requires high temporal- and spatial-resolution data, particularly in fragmented forests. In a unique replicated field experiment manipulating gypsy moth Lymantria dispar densities in mixed-oak forests, we examined the utility of publicly accessible satellite-borne radar (Sentinel-1) to track the fine-scale temporal trajectory of defoliation. The ratio of backscatter intensity between two polarizations from radar data of the growing season constituted a canopy development index (CDI) and a normalized CDI (NCDI), which were validated by optical (Sentinel-2) and terrestrial laser scanning (TLS) data as well by intensive caterpillar sampling from canopy fogging. The CDI and NCDI strongly correlated with optical and TLS data (Spearman's ρ = 0.79 and 0.84, respectively). The ΔNCDII\(_{Defoliation(A-C)}\) significantly explained caterpillar abundance (R\(^{2}\) = 0.52). The NCDI at critical timesteps and ΔNCDI related to defoliation and refoliation well discriminated between heavily and lightly defoliated forests. We demonstrate that the high spatial and temporal resolution and the cloud independence of Sentinel-1 radar potentially enable spatially unrestricted measurements of the highly dynamic canopy herbivory. This can help monitor insect pests, improve the prediction of outbreaks and facilitate the monitoring of forest disturbance, one of the high priority Essential Biodiversity Variables, in the near future.}, language = {en} } @article{AmbrožovaFinnbergFeldmannetal.2022, author = {Ambrožov{\´a}, Lucie and Finnberg, Sven and Feldmann, Benedikt and Buse, J{\"o}rn and Preuss, Henry and Ewald, J{\"o}rg and Thorn, Simon}, title = {Coppicing and topsoil removal promote diversity of dung-inhabiting beetles (Coleoptera: Scarabaeidae, Geotrupidae, Staphylinidae) in forests}, series = {Agricultural and Forest Entomology}, volume = {24}, journal = {Agricultural and Forest Entomology}, number = {1}, doi = {10.1111/afe.12472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258296}, pages = {104-113}, year = {2022}, abstract = {Central European forests experience a substantial loss of open-forest organisms due to forest management and increasing nitrogen deposition. However, management strategies, removing different levels of nitrogen, have been rarely evaluated simultaneously. We tested the additive effects of coppicing and topsoil removal on communities of dung-inhabiting beetles compared to closed forests. We sampled 57 021 beetles, using baited pitfall traps exposed on 27 plots. Experimental treatments resulted in significantly different communities by promoting open-habitat species. While alpha diversity did not differ among treatments, gamma diversity of Geotrupidae and Scarabaeidae and beta diversity of Staphylinidae were higher in coppice than in forest. Functional diversity of rove beetles was higher in both, coppice and topsoil-removed plots, compared to control plots. This was likely driven by higher habitat heterogeneity in established forest openings. Five dung beetle species and four rove beetle species benefitted from coppicing, one red-listed dung beetle and two rove beetle species benefitted from topsoil removal. Our results demonstrate that dung-inhabiting beetles related to open forest patches can be promoted by both, coppicing and additional topsoil removal. A mosaic of coppice and bare-soil-rich patches can hence promote landscape-level gamma diversity of dung and rove beetles within forests.}, language = {en} } @article{KoenigKraussKelleretal.2022, author = {K{\"o}nig, Sebastian and Krauss, Jochen and Keller, Alexander and Bofinger, Lukas and Steffan-Dewenter, Ingolf}, title = {Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient}, series = {Global Change Biology}, volume = {28}, journal = {Global Change Biology}, number = {13}, doi = {10.1111/gcb.16199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276441}, pages = {4027 -- 4040}, year = {2022}, abstract = {The composition and richness of herbivore and plant assemblages change along climatic gradients, but knowledge about associated shifts in specialization is scarce and lacks controlling for the abundance and phylogeny of interaction partners. Thus, we aimed to test whether the specialization of phytophagous insects in insect-plant interaction networks decreases toward cold habitats as predicted by the 'altitude niche-breadth hypothesis' to forecast possible consequences of interaction rewiring under climate change. We used a non-invasive, standardized metabarcoding approach to reconstruct dietary relationships of Orthoptera species as a major insect herbivore taxon along a broad temperature gradient (~12°C) in Southern Germany. Based on Orthoptera surveys, feeding observations, collection of fecal pellets from >3,000 individuals of 54 species, and parallel vegetation surveys on 41 grassland sites, we quantified plant resource availability and its use by herbivores. Herbivore assemblages were richer in species and individuals at sites with high summer temperatures, while plant richness peaked at intermediate temperatures. Corresponding interaction networks were most specialized in warm habitats. Considering phylogenetic relationships of plant resources, however, the specialization pattern was not linear but peaked at intermediate temperatures, mediated by herbivores feeding on a narrow range of phylogenetically related resources. Our study provides empirical evidence of resource specialization of insect herbivores along a climatic gradient, demonstrating that resource phylogeny, availability, and temperature interactively shape the specialization of herbivore assemblages. Instead of low specialization levels only in cold, harsh habitats, our results suggest increased generalist feeding due to intraspecific changes and compositional differences at both ends of the microclimatic gradient. We conclude that this nonlinear change of phylogeny-based resource specialization questions predictions derived from the 'altitude-niche breadth hypothesis' and highlights the currently limited understanding of how plant-herbivore interactions will change under future climatic conditions.}, language = {en} } @article{PeindlGoettlichCrouchetal.2022, author = {Peindl, Matthias and G{\"o}ttlich, Claudia and Crouch, Samantha and Hoff, Niklas and L{\"u}ttgens, Tamara and Schmitt, Franziska and Pereira, Jes{\´u}s Guillermo Nieves and May, Celina and Schliermann, Anna and Kronenthaler, Corinna and Cheufou, Danjouma and Reu-Hofer, Simone and Rosenwald, Andreas and Weigl, Elena and Walles, Thorsten and Sch{\"u}ler, Julia and Dandekar, Thomas and Nietzer, Sarah and Dandekar, Gudrun}, title = {EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers14092176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270744}, year = {2022}, abstract = {Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.}, language = {en} } @article{SchwarzLukassenBhandareetal.2022, author = {Schwarz, Jessica Denise and Lukassen, S{\"o}ren and Bhandare, Pranjali and Eing, Lorenz and Snaebj{\"o}rnsson, Marteinn Thor and Garc{\´i}a, Yiliam Cruz and Kisker, Jan Philipp and Schulze, Almut and Wolf, Elmar}, title = {The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2022.954358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290875}, year = {2022}, abstract = {Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.}, language = {en} } @article{GrittnerBairdStoeckl2022, author = {Grittner, Rebecca and Baird, Emily and St{\"o}ckl, Anna}, title = {Spatial tuning of translational optic flow responses in hawkmoths of varying body size}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {2}, issn = {1432-1351}, doi = {10.1007/s00359-021-01530-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266565}, pages = {279-296}, year = {2022}, abstract = {To safely navigate their environment, flying insects rely on visual cues, such as optic flow. Which cues insects can extract from their environment depends closely on the spatial and temporal response properties of their visual system. These in turn can vary between individuals that differ in body size. How optic flow-based flight control depends on the spatial structure of visual cues, and how this relationship scales with body size, has previously been investigated in insects with apposition compound eyes. Here, we characterised the visual flight control response limits and their relationship to body size in an insect with superposition compound eyes: the hummingbird hawkmoth Macroglossum stellatarum. We used the hawkmoths' centring response in a flight tunnel as a readout for their reception of translational optic flow stimuli of different spatial frequencies. We show that their responses cut off at different spatial frequencies when translational optic flow was presented on either one, or both tunnel walls. Combined with differences in flight speed, this suggests that their flight control was primarily limited by their temporal rather than spatial resolution. We also observed strong individual differences in flight performance, but no correlation between the spatial response cutoffs and body or eye size.}, language = {en} } @article{AlWarhiElmaidomyMaheretal.2022, author = {Al-Warhi, Tarfah and Elmaidomy, Abeer H. and Maher, Sherif A. and Abu-Baih, Dalia H. and Selim, Samy and Albqmi, Mha and Al-Sanea, Mohammad M. and Alnusaire, Taghreed S. and Ghoneim, Mohammed M. and Mostafa, Ehab M. and Hussein, Shaimaa and El-Damasy, Ashraf K. and Saber, Entesar Ali and Elrehany, Mahmoud A. and Sayed, Ahmed M. and Othman, Eman M. and El-Sherbiny, Mohamed and Abdelmohsen, Usama Ramadan}, title = {The wound-healing potential of Olea europaea L. Cv. Arbequina leaves extract: an integrated in vitro, in silico, and in vivo investigation}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {9}, issn = {2218-1989}, doi = {10.3390/metabo12090791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286150}, year = {2022}, abstract = {Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has received little attention. Besides our previous work for the chemical profiling of OEA leaves using LC-HRESIMS, an additional 23 compounds are identified. An excision wound model is used to measure wound healing action. Wounds are provided with OEA (2\% w/v) or MEBO\(^®\) cream (marketed treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO\(^®\) (p < 0.05) are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds. Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The capability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation, and ΔG calculation), and their role in the wound-healing process is also characterized. The potential of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC\(_{50}\) = 88.0 ± 0.1 nM). In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage wound healing because of its anti-inflammatory and antioxidant properties.}, language = {en} } @article{TamihardjaZehnerHartrampfetal.2022, author = {Tamihardja, J{\"o}rg and Zehner, Leonie and Hartrampf, Philipp and Lisowski, Dominik and Kneitz, Susanne and Cirsi, Sinan and Razinskas, Gary and Flentje, Michael and Polat, B{\"u}lent}, title = {Salvage nodal radiotherapy as metastasis-directed therapy for oligorecurrent prostate cancer detected by positron emission tomography shows favorable outcome in long-term follow-up}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {15}, issn = {2072-6694}, doi = {10.3390/cancers14153766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286064}, year = {2022}, abstract = {Simple Summary Patients, who suffer from oligorecurrent prostate cancer with limited nodal involvement, may be offered positron emission tomography (PET)-directed salvage nodal radiotherapy to delay disease progression. This current analysis aimed to access salvage radiotherapy for nodal oligorecurrent prostate cancer with simultaneous integrated boost to PET-involved lymph nodes as metastasis-directed therapy. A long-term oncological outcome was favorable after salvage nodal radiotherapy and severe toxicity rates were low. Androgen deprivation therapy plays a major role in recurrent prostate cancer management and demonstrates a positive influence on the rate of biochemical progression in patients receiving salvage nodal radiotherapy. The present long-term analysis may help clinicians identify patients who would benefit from salvage nodal radiotherapy and androgen deprivation therapy, as a multimodal treatment strategy for oligorecurrent prostate cancer. Abstract Background: The study aimed to access the long-term outcome of salvage nodal radiotherapy (SNRT) in oligorecurrent prostate cancer. Methods: A total of 95 consecutive patients received SNRT for pelvic and/or extrapelvic nodal recurrence after prostate-specific membrane antigen (PSMA) or choline PET from 2010 to 2021. SNRT was applied as external beam radiotherapy with simultaneous integrated boost up to a median total dose of 62.9 Gy (EQD2\(_{1.5Gy}\)) to the recurrent lymph node metastases. The outcome was analyzed by cumulative incidence functions with death as the competing risk. Fine-Gray regression analyses were performed to estimate the relative hazards of the outcome parameters. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (v5.0). The results are as follows: the median follow-up was 47.1 months. The five-year biochemical progression rate (95\% CI) was 50.1\% (35.7-62.9\%). Concomitant androgen deprivation therapy (ADT) was adminstered in 60.0\% of the patients. The five-year biochemical progression rate was 75.0\% (42.0-90.9\%) without ADT versus 35.3\% (19.6-51.4\%) with ADT (p = 0.003). The cumulative five-year late grade 3 GU toxicity rate was 2.1\%. No late grade 3 GI toxicity occured. Conclusions: Metastasis-directed therapy through SNRT for PET-staged oligorecurrent prostate cancer demonstrated a favorable long-term oncologic outcome. Omittance of ADT led to an increased biochemical progression.}, language = {en} } @article{EderHollmannMandasarietal.2022, author = {Eder, Sascha and Hollmann, Claudia and Mandasari, Putri and Wittmann, Pia and Schumacher, Fabian and Kleuser, Burkhard and Fink, Julian and Seibel, J{\"u}rgen and Schneider-Schaulies, J{\"u}rgen and Stigloher, Christian and Beyersdorf, Niklas and Dembski, Sofia}, title = {Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations}, series = {Journal of Functional Biomaterials}, volume = {13}, journal = {Journal of Functional Biomaterials}, number = {3}, issn = {2079-4983}, doi = {10.3390/jfb13030111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286130}, year = {2022}, abstract = {A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes.}, language = {en} } @article{NazzalHowariYaslametal.2022, author = {Nazzal, Yousef and Howari, Fares M. and Yaslam, Aya and Iqbal, Jibran and Maloukh, Lina and Ambika, Lakshmi Kesari and Al-Taani, Ahmed A. and Ali, Ijaz and Othman, Eman M. and Jamal, Arshad and Naseem, Muhammad}, title = {A methodological review of tools that assess dust microbiomes, metatranscriptomes and the particulate chemistry of indoor dust}, series = {Atmosphere}, volume = {13}, journal = {Atmosphere}, number = {8}, issn = {2073-4433}, doi = {10.3390/atmos13081276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285957}, year = {2022}, abstract = {Indoor house dust is a blend of organic and inorganic materials, upon which diverse microbial communities such as viruses, bacteria and fungi reside. Adequate moisture in the indoor environment helps microbial communities multiply fast. The outdoor air and materials that are brought into the buildings by airflow, sandstorms, animals pets and house occupants endow the indoor dust particles with extra features that impact human health. Assessment of the health effects of indoor dust particles, the type of indoor microbial inoculants and the secreted enzymes by indoor insects as allergens merit detailed investigation. Here, we discuss the applications of next generation sequencing (NGS) technology which is used to assess microbial diversity and abundance of the indoor dust environments. Likewise, the applications of NGS are discussed to monitor the gene expression profiles of indoor human occupants or their surrogate cellular models when exposed to aqueous solution of collected indoor dust samples. We also highlight the detection methods of dust allergens and analytical procedures that quantify the chemical nature of indoor particulate matter with a potential impact on human health. Our review is thus unique in advocating the applications of interdisciplinary approaches that comprehensively assess the health effects due to bad air quality in built environments.}, language = {en} } @article{SarukhanyanShanmugamDandekar2022, author = {Sarukhanyan, Edita and Shanmugam, Tipack Ayothyapattanam and Dandekar, Thomas}, title = {In silico studies reveal Peramivir and Zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {18}, issn = {1420-3049}, doi = {10.3390/molecules27185920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288240}, year = {2022}, abstract = {An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 {\AA}) with respect to the reference structure.}, language = {en} } @article{VollandKauppSchmitzetal.2022, author = {Volland, Julian Manuel and Kaupp, Johannes and Schmitz, Werner and W{\"u}nsch, Anna Chiara and Balint, Julia and M{\"o}llmann, Marc and El-Mesery, Mohamed and Frackmann, Kyra and Peter, Leslie and Hartmann, Stefan and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {Mass spectrometric metabolic fingerprinting of 2-Deoxy-D-Glucose (2-DG)-induced inhibition of glycolysis and comparative analysis of methionine restriction versus glucose restriction under perfusion culture in the murine L929 model system}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286007}, year = {2022}, abstract = {All forms of restriction, from caloric to amino acid to glucose restriction, have been established in recent years as therapeutic options for various diseases, including cancer. However, usually there is no direct comparison between the different restriction forms. Additionally, many cell culture experiments take place under static conditions. In this work, we used a closed perfusion culture in murine L929 cells over a period of 7 days to compare methionine restriction (MetR) and glucose restriction (LowCarb) in the same system and analysed the metabolome by liquid chromatography mass spectrometry (LC-MS). In addition, we analysed the inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) over a period of 72 h. 2-DG induced very fast a low-energy situation by a reduced glycolysis metabolite flow rate resulting in pyruvate, lactate, and ATP depletion. Under perfusion culture, both MetR and LowCarb were established on the metabolic level. Interestingly, over the period of 7 days, the metabolome of MetR and LowCarb showed more similarities than differences. This leads to the conclusion that the conditioned medium, in addition to the different restriction forms, substantially reprogramm the cells on the metabolic level.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2022, author = {Dhillon, Maninder Singh and Dahms, Thorsten and K{\"u}bert-Flock, Carina and Steffan-Dewenter, Ingolf and Zhang, Jie and Ullmann, Tobias}, title = {Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323471}, year = {2022}, abstract = {The increasing availability and variety of global satellite products provide a new level of data with different spatial, temporal, and spectral resolutions; however, identifying the most suited resolution for a specific application consumes increasingly more time and computation effort. The region's cloud coverage additionally influences the choice of the best trade-off between spatial and temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-seminatural. To investigate the importance of RS data for these LC classes, the present study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. These eight synthetic NDVI STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 (overall R\(^2\) = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than Landsat (overall R\(^2\) = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R\(^2\) = 0.62, RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R\(^2\) = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 (R\(^2\) = 0.60, RMSE = 0.05) and S-MOD13Q1 (R\(^2\) = 0.52, RMSE = 0.09) for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.}, language = {en} } @article{KortmannAngelstamMayeretal.2022, author = {Kortmann, Mareike and Angelstam, Per and Mayer, Marius and Leibl, Franz and Reichert, Jessica and Thorn, Christine and Thorn, Simon}, title = {Disturbance severity and human-nature relationships: A new approach to analyze people's well-being along a bark beetle infestation gradient}, series = {Forests}, volume = {13}, journal = {Forests}, number = {11}, issn = {1999-4907}, doi = {10.3390/f13111954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297429}, year = {2022}, abstract = {Contact to nature and greenspace is important for emotional well-being and can promote human health. Forest landscapes provide such access to greenspace, especially in protected areas. However, forested protected areas are impacted by natural disturbances such as bark beetle infestations. On the one hand, such disturbances have positive impacts on ecological processes and biodiversity. On the other hand, they have allegedly negative impacts on the recreational value of a landscape. Limited knowledge about the public's perception of forests subject to natural disturbances still hampers forest management to balance ecological functions and visitors' recreational experience. Thus, our aim was to determine how attitudes towards nature influence the personal well-being in a naturally disturbed landscape. We investigated self-reported well-being and attitudes towards nature in a standardized questionnaire-based survey of 1008 German inhabitants in an experimentally adapted landscape visualization. Self-reported well-being was generally highest in landscapes with relatively few bark-beetle-killed trees. This was especially the case for people who felt included with nature and preferred an appreciative use or preservation of nature. Conversely, people who had previously visited a national park with visible bark beetle infestations rated their personal well-being highest in landscapes with larger proportions of beetle-killed trees. Our results indicate that it is necessary to analyze people's knowledge about and relations to forest landscapes as well as concepts of nature conservation, natural landscapes, and biodiversity to gain a better understanding of people's perceptions of natural disturbances.}, language = {en} } @article{HenrikssonCalderonMontanoSolvieetal.2022, author = {Henriksson, Sofia and Calder{\´o}n-Monta{\~n}o, Jos{\´e} Manuel and Solvie, Daniel and Warpman Berglund, Ulrika and Helleday, Thomas}, title = {Overexpressed c-Myc sensitizes cells to TH1579, a mitotic arrest and oxidative DNA damage inducer}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {12}, issn = {2218-273X}, doi = {10.3390/biom12121777}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297547}, year = {2022}, abstract = {Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.}, language = {en} } @article{RackeveiBorgesEngstleretal.2022, author = {Rackevei, Antonia S. and Borges, Alyssa and Engstler, Markus and Dandekar, Thomas and Wolf, Matthias}, title = {About the analysis of 18S rDNA sequence data from trypanosomes in barcoding and phylogenetics: tracing a continuation error occurring in the literature}, series = {Biology}, volume = {11}, journal = {Biology}, number = {11}, issn = {2079-7737}, doi = {10.3390/biology11111612}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297562}, year = {2022}, abstract = {The variable regions (V1-V9) of the 18S rDNA are routinely used in barcoding and phylogenetics. In handling these data for trypanosomes, we have noticed a misunderstanding that has apparently taken a life of its own in the literature over the years. In particular, in recent years, when studying the phylogenetic relationship of trypanosomes, the use of V7/V8 was systematically established. However, considering the current numbering system for all other organisms (including other Euglenozoa), V7/V8 was never used. In Maia da Silva et al. [Parasitology 2004, 129, 549-561], V7/V8 was promoted for the first time for trypanosome phylogenetics, and since then, more than 70 publications have replicated this nomenclature and even discussed the benefits of the use of this region in comparison to V4. However, the primers used to amplify the variable region of trypanosomes have actually amplified V4 (concerning the current 18S rDNA numbering system).}, language = {en} } @article{CastilloWurdackPaulietal.2022, author = {Castillo, Ruth and Wurdack, Mareike and Pauli, Thomas and Keller, Alexander and Feldhaar, Heike and Polidori, Carlo and Niehuis, Oliver and Schmitt, Thomas}, title = {Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps}, series = {BMC Ecology and Evolution}, volume = {22}, journal = {BMC Ecology and Evolution}, number = {1}, doi = {10.1186/s12862-022-02093-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301289}, year = {2022}, abstract = {Background Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. Results We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. Conclusion Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites.}, language = {en} } @article{FrickeSteffanDewenterZhangetal.2022, author = {Fricke, Ute and Steffan-Dewenter, Ingolf and Zhang, Jie and Tobisch, Cynthia and Rojas-Botero, Sandra and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Uhler, Johannes and Uphus, Lars and Ewald, J{\"o}rg and Kollmann, Johannes and Redlich, Sarah}, title = {Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0264881}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301292}, year = {2022}, abstract = {Arthropod predators are important for ecosystem functioning by providing top-down regulation of insect herbivores. As predator communities and activity are influenced by biotic and abiotic factors on different spatial scales, the strength of top-down regulation ('arthropod predation') is also likely to vary. Understanding the combined effects of potential drivers on arthropod predation is urgently needed with regard to anthropogenic climate and land-use change. In a large-scale study, we recorded arthropod predation rates using artificial caterpillars on 113 plots of open herbaceous vegetation embedded in contrasting habitat types (forest, grassland, arable field, settlement) along climate and land-use gradients in Bavaria, Germany. As potential drivers we included habitat characteristics (habitat type, plant species richness, local mean temperature and mean relative humidity during artificial caterpillar exposure), landscape diversity (0.5-3.0-km, six scales), climate (multi-annual mean temperature, 'MAT') and interactive effects of habitat type with other drivers. We observed no substantial differences in arthropod predation rates between the studied habitat types, related to plant species richness and across the Bavarian-wide climatic gradient, but predation was limited when local mean temperatures were low and tended to decrease towards higher relative humidity. Arthropod predation rates increased towards more diverse landscapes at a 2-km scale. Interactive effects of habitat type with local weather conditions, plant species richness, landscape diversity and MAT were not observed. We conclude that landscape diversity favours high arthropod predation rates in open herbaceous vegetation independent of the dominant habitat in the vicinity. This finding may be harnessed to improve top-down control of herbivores, e.g. agricultural pests, but further research is needed for more specific recommendations on landscape management. The absence of MAT effects suggests that high predation rates may occur independent of moderate increases of MAT in the near future.}, language = {en} } @article{PliegerWolf2022, author = {Plieger, Tanja and Wolf, Matthias}, title = {18S and ITS2 rDNA sequence-structure phylogeny of Prototheca (Chlorophyta, Trebouxiophyceae)}, series = {Biologia}, volume = {77}, journal = {Biologia}, number = {2}, issn = {1336-9563}, doi = {10.1007/s11756-021-00971-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269897}, pages = {569-582}, year = {2022}, abstract = {Protothecosis is an infectious disease caused by organisms currently classified within the green algal genus Prototheca. The disease can manifest as cutaneous lesions, olecranon bursitis or disseminated or systemic infections in both immunocompetent and immunosuppressed patients. Concerning diagnostics, taxonomic validity is important. Prototheca, closely related to the Chlorella species complex, is known to be polyphyletic, branching with Auxenochlorella and Helicosporidium. The phylogeny of Prototheca was discussed and revisited several times in the last decade; new species have been described. Phylogenetic analyses were performed using ribosomal DNA (rDNA) and partial mitochondrial cytochrome b (cytb) sequence data. In this work we use Internal Transcribed Spacer 2 (ITS2) as well as 18S rDNA data. However, for the first time, we reconstruct phylogenetic relationships of Prototheca using primary sequence and RNA secondary structure information simultaneously, a concept shown to increase robustness and accuracy of phylogenetic tree estimation. Using encoded sequence-structure data, Neighbor-Joining, Maximum-Parsimony and Maximum-Likelihood methods yielded well-supported trees in agreement with other trees calculated on rDNA; but differ in several aspects from trees using cytb as a phylogenetic marker. ITS2 secondary structures of Prototheca sequences are in agreement with the well-known common core structure of eukaryotes but show unusual differences in their helix lengths. An elongation of the fourth helix of some species seems to have occurred independently in the course of evolution.}, language = {en} } @article{RedlichZhangBenjaminetal.2022, author = {Redlich, Sarah and Zhang, Jie and Benjamin, Caryl and Dhillon, Maninder Singh and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Hovestadt, Thomas and Kollmann, Johannes and Koellner, Thomas and K{\"u}bert-Flock, Carina and Kunstmann, Harald and Menzel, Annette and Moning, Christoph and Peters, Wibke and Riebl, Rebekka and Rummler, Thomas and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {2}, doi = {10.1111/2041-210X.13759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258270}, pages = {514-527}, year = {2022}, abstract = {Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981-2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6-9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5-10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.}, language = {en} } @article{VenjakobRuedenauerKleinetal.2022, author = {Venjakob, C. and Ruedenauer, F. A. and Klein, A.-M. and Leonhardt, S. D.}, title = {Variation in nectar quality across 34 grassland plant species}, series = {Plant Biology}, volume = {24}, journal = {Plant Biology}, number = {1}, doi = {10.1111/plb.13343}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262612}, pages = {134 -- 144}, year = {2022}, abstract = {Floral nectar is considered the most important floral reward for attracting pollinators. It contains large amounts of carbohydrates besides variable concentrations of amino acids and thus represents an important food source for many pollinators. Its nutrient content and composition can, however, strongly vary within and between plant species. The factors driving this variation in nectar quality are still largely unclear. We investigated factors underlying interspecific variation in macronutrient composition of floral nectar in 34 different grassland plant species. Specifically, we tested for correlations between the phylogenetic relatedness and morphology of plants and the carbohydrate (C) and total amino acid (AA) composition and C:AA ratios of nectar. We found that compositions of carbohydrates and (essential) amino acids as well as C:AA ratios in nectar varied significantly within and between plant species. They showed no clear phylogenetic signal. Moreover, variation in carbohydrate composition was related to family-specific structural characteristics and combinations of morphological traits. Plants with nectar-exposing flowers, bowl- or parabolic-shaped flowers, as often found in the Apiaceae and Asteraceae, had nectar with higher proportions of hexoses, indicating a selective pressure to decelerate evaporation by increasing nectar osmolality. Our study suggests that variation in nectar nutrient composition is, among others, affected by family-specific combinations of morphological traits. However, even within species, variation in nectar quality is high. As nectar quality can strongly affect visitation patterns of pollinators and thus pollination success, this intra- and interspecific variation requires more studies to fully elucidate the underlying causes and the consequences for pollinator behaviour.}, language = {en} } @article{AydinliLiangDandekar2022, author = {Aydinli, Muharrem and Liang, Chunguang and Dandekar, Thomas}, title = {Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-21732-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301268}, year = {2022}, abstract = {Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one's own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA-protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations (https://bioinfo-wuerz.de/aimodules/; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules). The application is free and open source whether used online, on-site, or locally.}, language = {en} } @article{AbdelLatifFathyAnwaretal.2022, author = {Abdel-Latif, Rania and Fathy, Moustafa and Anwar, Hend Ali and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin}, series = {Antioxidants}, volume = {11}, journal = {Antioxidants}, number = {5}, issn = {2076-3921}, doi = {10.3390/antiox11050863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271223}, year = {2022}, abstract = {Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.}, language = {en} } @article{DeppischHelfrichFoersterSenthilan2022, author = {Deppisch, Peter and Helfrich-F{\"o}rster, Charlotte and Senthilan, Pingkalai R.}, title = {The gain and loss of cryptochrome/photolyase family members during evolution}, series = {Genes}, volume = {13}, journal = {Genes}, number = {9}, doi = {10.3390/genes13091613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312873}, year = {2022}, abstract = {The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.}, language = {en} } @article{FischerHartmannReisslandetal.2022, author = {Fischer, Thomas and Hartmann, Oliver and Reissland, Michaela and Prieto-Garcia, Cristian and Klann, Kevin and Pahor, Nikolett and Sch{\"u}lein-V{\"o}lk, Christina and Baluapuri, Apoorva and Polat, B{\"u}lent and Abazari, Arya and Gerhard-Hartmann, Elena and Kopp, Hans-Georg and Essmann, Frank and Rosenfeldt, Mathias and M{\"u}nch, Christian and Flentje, Michael and Diefenbacher, Markus E.}, title = {PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy}, series = {Cell \& Bioscience}, volume = {12}, journal = {Cell \& Bioscience}, issn = {2045-3701}, doi = {10.1186/s13578-022-00778-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299865}, year = {2022}, abstract = {Background Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. Results We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. Conclusion PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.}, language = {en} } @article{KrimmerMartinHolzschuhetal.2022, author = {Krimmer, Elena and Martin, Emily A. and Holzschuh, Andrea and Krauss, Jochen and Steffan-Dewenter, Ingolf}, title = {Flower fields and pesticide use interactively shape pollen beetle infestation and parasitism in oilseed rape fields}, series = {Journal of Applied Ecology}, volume = {59}, journal = {Journal of Applied Ecology}, number = {1}, doi = {10.1111/1365-2664.14051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258037}, pages = {263-273}, year = {2022}, abstract = {Pollen beetles (Brassicogethes spp.) are the main pests of oilseed rape (OSR, Brassica napus) in Europe and responsible for massive yield losses. Upcoming pesticide resistances highlight the need for other means of crop protection, such as natural pest control. Sown flower fields aim to counteract the decrease of insect biodiversity in agricultural landscapes by providing resources to ecosystem service providers. However, the optimal age and size of flower fields to increase natural pest control is still unclear. We conducted experiments on 31 OSR fields located along a gradient of landscape-scale semi-natural habitat (SNH). OSR fields were located adjacent to flower fields which differed in age, continuity and size, or adjacent to crop fields or calcareous grasslands. Pesticide-free areas were established to examine interactive effects of pesticide use and flower field characteristics. The abundance of pollen beetle adults and larvae, parasitism and superparasitism rates in OSR were recorded at increasing distances to the adjacent sites. Flower fields and calcareous grasslands increased pollen beetle parasitism when compared to OSR fields neighbouring crop fields. The threshold for effective natural pest control of 35\% could be reached in the pesticide-free areas of OSR fields adjacent to calcareous grasslands and flower fields maintained continuously for at least 6 years. In pesticide-sprayed areas, pollen beetle parasitism and superparasitism declined with increasing distance to the adjacent field. Furthermore, flower fields larger than 1.5 ha were able to improve pollen beetle parasitism more than smaller fields. Synthesis and applications. To promote natural pest control in oilseed rape (OSR), large flower fields should be maintained for several years, to create stable habitats for natural enemies. The continuous maintenance of flower fields should be preferred, as ploughing and resowing after 5-6 years decreased the positive effects of the flower fields on natural pest control in adjacent OSR fields. However, pesticide use can abrogate positive effects of flower fields on pollen beetle parasitism. This study highlights that sown flower fields have the potential to increase natural pest control in OSR, but this potential is depending on its age, continuity and size and can be hindered by pesticide use.}, language = {en} } @article{VellmerHartlebFraderaSolaetal.2022, author = {Vellmer, Tim and Hartleb, Laura and Fradera Sola, Albert and Kramer, Susanne and Meyer-Natus, Elisabeth and Butter, Falk and Janzen, Christian J.}, title = {A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1010514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301372}, year = {2022}, abstract = {A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.}, language = {en} } @article{StormsJakharMitesseretal.2022, author = {Storms, Mona and Jakhar, Aryan and Mitesser, Oliver and Jechow, Andreas and H{\"o}lker, Franz and Degen, Tobias and Hovestadt, Thomas and Degen, Jacqueline}, title = {The rising moon promotes mate finding in moths}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, doi = {10.1038/s42003-022-03331-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301365}, year = {2022}, abstract = {To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths.}, language = {en} } @phdthesis{Anwar2022, author = {Anwar, Ammarah}, title = {Natural variation of gene regulatory networks in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-29154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291549}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Understanding the causal relationship between genotype and phenotype is a major objective in biology. The main interest is in understanding trait architecture and identifying loci contributing to the respective traits. Genome-wide association mapping (GWAS) is one tool to elucidate these relationships and has been successfully used in many different species. However, most studies concentrate on marginal marker effects and ignore epistatic and gene-environment interactions. These interactions are problematic to account for, but are likely to make major contributions to many phenotypes that are not regulated by independent genetic effects, but by more sophisticated gene-regulatory networks. Further complication arises from the fact that these networks vary in different natural accessions. However, understanding the differences of gene regulatory networks and gene-gene interactions is crucial to conceive trait architecture and predict phenotypes. The basic subject of this study - using data from the Arabidopsis 1001 Genomes Project - is the analysis of pre-mature stop codons. These have been incurred in nearly one-third of the ~ 30k genes. A gene-gene interaction network of the co-occurrence of stop codons has been built and the over and under representation of different pairs has been statistically analyzed. To further classify the significant over and under- represented gene-gene interactions in terms of molecular function of the encoded proteins, gene ontology terms (GO-SLIM) have been applied. Furthermore, co- expression analysis specifies gene clusters that co-occur over different genetic and phenotypic backgrounds. To link these patterns to evolutionary constrains, spatial location of the respective alleles have been analyzed as well. The latter shows clear patterns for certain gene pairs that indicate differential selection.}, subject = {Arabidopsis thaliana}, language = {en} } @unpublished{Dandekar2022, author = {Dandekar, Thomas}, title = {Qubit transition into defined Bits: A fresh perspective for cosmology and unifying theories}, doi = {10.25972/OPUS-26641}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266418}, pages = {42}, year = {2022}, abstract = {In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence ("big bang") but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real "outside", once you leave our everyday universe. A set of n Qubits in the ocean are "liquid", in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results.}, language = {en} } @article{MamontovaTrifaultBurger2022, author = {Mamontova, Victoria and Trifault, Barbara and Burger, Kaspar}, title = {Compartment-specific proximity ligation expands the toolbox to assess the interactome of the long non-coding RNA NEAT1}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms23084432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284185}, year = {2022}, abstract = {The nuclear paraspeckle assembly transcript 1 (NEAT1) locus encodes two long non-coding (lnc)RNA isoforms that are upregulated in many tumours and dynamically expressed in response to stress. NEAT1 transcripts form ribonucleoprotein complexes with numerous RNA-binding proteins (RBPs) to assemble paraspeckles and modulate the localisation and activity of gene regulatory enzymes as well as a subset of messenger (m)RNA transcripts. The investigation of the dynamic composition of NEAT1-associated proteins and mRNAs is critical to understand the function of NEAT1. Interestingly, a growing number of biochemical and genetic tools to assess NEAT1 interactomes has been reported. Here, we discuss the Hybridisation Proximity (HyPro) labeling technique in the context of NEAT1. HyPro labeling is a recently developed method to detect spatially ordered interactions of RNA-containing nuclear compartments in cultured human cells. After introducing NEAT1 and paraspeckles, we describe the advantages of the HyPro technology in the context of other methods to study RNA interactomes, and review the key findings in mapping NEAT1-associated RNA transcripts and protein binding partners. We further discuss the limitations and potential improvements of HyPro labeling, and conclude by delineating its applicability in paraspeckles-related cancer research.}, language = {en} } @phdthesis{Sagwe2022, author = {Sagwe, Rose Nyakemiso}, title = {Pollinator diversity, pollination deficits, and pollination efficiency in avocado (\(Persea\) \(americana\)) production across different landscapes in Murang'a county, Kenya}, doi = {10.25972/OPUS-26920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Avocado (Persea americana Mill.) is a major horticultural crop that relies on insect mediated pollination. In avocado production, a knowledge gap exists as to the importance of insect pollination, especially in East African smallholder farms. Although it is evident that pollination improves the yield of avocado fruits, it is still unclear if pollination has benefits on fruit quality and the nutritional profile, particularly oils. Prior studies have shown that honey bees increase avocado's fruit set and yield. However, an avocado flower is being visited by various insect species. Therefore, determining pollination efficiency will allow a comparison of the relative importance of the different insect species to optimize crop pollination for increased fruit set and crop yield and pollinator conservation. This study was conducted in a leading smallholder avocado production region in Kenya, first I assessed the dependence of avocado fruit set on insect pollination and whether current smallholder production systems suffer from a deficit in pollination services. Furthermore, I assessed if supplementation with colonies of the Western honey bee (Apis mellifera L.) to farms mitigated potential pollination deficits. The results revealed a very high reliance of avocado on insect pollinators, with a significantly lower fruit set observed for self- and wind-pollinated (17.4\%) or self-pollinated flowers (6.4\%) in comparison with insect-pollinated flowers (89.5\%). I found a significant pollination deficit across farms, with hand-pollinated flowers on average producing 20.7\% more fruits than non-treated open flowers prior to fruit abortion. This pollination deficit could be compensated by the supplementation of farms with A. mellifera colonies. These findings suggest that pollination is limiting fruit set in avocado and that A. mellifera supplementation on farms is a potential option to increase fruit yield. Secondly, I investigated the contribution of insect pollination to fruit and seed weight, oil, protein, carbohydrate, and phytochemicals contents (flavonoids and phenolics), and whether supplementation with pollinators (honey bee) could improve these fruit parameters was assessed. This was through pollinator-manipulative pollination treatments: hand, open, pollinator exclusion experiments. The results showed that avocado fruit weight was significantly higher in open and hand-pollinated than pollinator exclusion treatments, indicating that flower visitors/pollinators contribute to avocado yields and enhance marketability. Furthermore, insect pollination resulted in heavier seeds and higher oil contents, indicating that insect pollination is beneficial for the fruit's high seed yield and quantity of oil. Honey bee supplementation also enhanced the avocado fruit weight by 18\% more than in control farms and slightly increased the avocado oil content (3.6\%). Contrarily, insect pollination did not influence other assayed fruit quality parameters (protein, carbohydrates, and phytochemicals). These results indicate that insect pollinators are essential for optimizing avocado yields, nutritional quality (oils), and thus marketability, underscoring the value of beehive supplementation to achieve high-quality avocado fruits and improved food security. Thirdly, pollinator efficiency based on pollen deposition after single visits by different pollinator species in avocado flowers was tested, and their frequency was recorded. The estimated pollination efficiency was highest in honey bees (Apis mellifera), followed by the hoverfly species (Phytomia incisa). These two species had the highest pollen deposition and more pollen grains on their bodies. In addition, honey bees were the most frequent avocado flower visitors, followed by flies. The findings from this study highlight the higher pollination efficiency of honey bees and Phytomia incisa. Hence, management practices supporting these species will promote increased avocado fruit yield. Additionally, these results imply that managed honey bees can be maintained to improve avocado pollination, particularly in areas lacking sufficient wild pollinators.}, language = {en} } @article{BuellesbachDiaoSchmittetal.2022, author = {Buellesbach, Jan and Diao, Wenwen and Schmitt, Thomas and Beukeboom, Leo W.}, title = {Micro-climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis}, series = {Ecological Entomology}, volume = {47}, journal = {Ecological Entomology}, number = {1}, doi = {10.1111/een.13089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262770}, pages = {38 -- 51}, year = {2022}, abstract = {1. Protection against desiccation and chemical communication are two fundamental functions of cuticular hydrocarbons (CHCs) in insects. In the parasitoid jewel wasp Nasonia vitripennis (Walker), characterised by a cosmopolitan distribution through largely different environments, CHCs function as universally recognised female sex pheromones. However, CHC uniformity as basis for sexual recognition may conflict with the desiccation protection function, expected to display considerable flexibility through adaptation to different environmental conditions. 2. We compared male and female CHC profiles of N. vitripennis across a wide latitudinal gradient in Europe and correlated their CHC variation with climatic factors associated with desiccation. Additionally, we tested male mate discrimination behaviour between populations to detect potential variations in female sexual attractiveness. 3. Results did not conform to the general expectation that longer, straight-chain CHCs occur in higher proportions in warmer and drier climates. Instead, unexpected environmental correlations of intermediate chain-length CHCs (C31) were found exclusively in females, potentially reflecting the different life histories of the sexes in N. vitripennis. 4. Furthermore, we found no indication of population-specific male mate preference, confirming the stability of female sexual attractiveness, likely conveyed through their CHC profiles. C31 mono- and C33 di-methyl-branched alkanes were consistently and most strongly associated with sexual dimorphism, suggesting their potential role in encoding the female-specific sexual signalling function. 5. Our study sheds light on how both adaptive flexibility and conserved sexual attractiveness can potentially be integrated and encoded in CHC profiles of N. vitripennis females across a wide distribution range in Europe.}, language = {en} } @article{FathyDarwishAbdelhamidetal.2022, author = {Fathy, Moustafa and Darwish, Mostafa A. and Abdelhamid, Al-Shaimaa M. and Alrashedy, Gehad M. and Othman, Othman Ali and Naseem, Muhammad and Dandekar, Thomas and Othman, Eman M.}, title = {Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {7}, issn = {2227-9059}, doi = {10.3390/biomedicines10071620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281686}, year = {2022}, abstract = {Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.}, language = {en} } @article{HutinLingTarbouriechetal.2022, author = {Hutin, Stephanie and Ling, Wai Li and Tarbouriech, Nicolas and Schoehn, Guy and Grimm, Clemens and Fischer, Utz and Burmeister, Wim P.}, title = {The vaccinia virus DNA helicase structure from combined single-particle cryo-electron microscopy and AlphaFold2 prediction}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {10}, issn = {1999-4915}, doi = {10.3390/v14102206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290523}, year = {2022}, abstract = {Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323-785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 {\AA} structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements.}, language = {en} }