@phdthesis{Weisert2024, author = {Weisert, Nadine}, title = {Characterization of telomere-associated proteins in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-35273}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The unicellular pathogen Trypanosoma brucei is the causative agent of African trypanosomiasis, an endemic disease prevalent in sub-Saharan Africa. Trypanosoma brucei alternates between a mammalian host and the tsetse fly vector. The extracellular parasite survives in the mammalian bloodstream by periodically exchanging their ˈvariant surface glycoproteinˈ (VSG) coat to evade the host immune response. This antigenic variation is achieved through monoallelic expression of one VSG variant from subtelomeric ˈbloodstream form expression sitesˈ (BES) at a given timepoint. During the differentiation from the bloodstream form (BSF) to the procyclic form (PCF) in the tsetse fly midgut, the stage specific surface protein is transcriptionally silenced and replaced by procyclins. Due to their subtelomeric localization on the chromosomes, VSG transcription and silencing is partly regulated by homologues of the mammalian telomere complex such as TbTRF, TbTIF2 and TbRAP1 as well as by ˈtelomere-associated proteinsˈ (TelAPs) like TelAP1. To gain more insights into transcription regulation of VSG genes, the identification and characterization of other TelAPs is critical and has not yet been achieved. In a previous study, two biochemical approaches were used to identify other novel TelAPs. By using ˈco-immunoprecipitationˈ (co-IP) to enrich possible interaction partners of TbTRF and by affinity chromatography using telomeric repeat oligonucleotides, a listing of TelAP candidates has been conducted. With this approach TelAP1 was identified as a novel component of the telomere complex, involved in the kinetics of transcriptional BES silencing during BSF to PCF differentiation. To gain further insights into the telomere complex composition, other previously enriched proteins were characterized through a screening process using RNA interference to deplete potential candidates. VSG expression profile changes and overall proteomic changes after depletion were analyzed by mass spectrometry. With this method, one can gain insights into the functions of the proteins and their involvement in VSG expression site regulation. To validate the interaction of proteins enriched by co-IP with TbTRF and TelAP1 and to identify novel interaction proteins, I performed reciprocal affinity purifications of the four most promising candidates (TelAP2, TelAP3, PPL2 and PolIE) and additionally confirmed colocalization of two candidates with TbTRF via immunofluorescence (TelAP2, TelAP3). TelAP3 colocalizes with TbTRF and potentially interacts with TbTRF, TbTIF2, TelAP1 and TelAP2, as well as with two translesion polymerases PPL2 and PolIE in BSF. PPL2 and PolIE seem to be in close contact to each other at the telomeric ends and fulfill different roles as only PolIE is involved in VSG regulation while PPL2 is not. TelAP2 was previously characterized to be associated with telomeres by partially colocalizing with TbTRF and cells show a VSG derepression phenotype when the protein was depleted. Here I show that TelAP2 interacts with the telomere-binding proteins TbTRF and TbTIF2 as well as with the telomere-associated protein TelAP1 in BSF and that TelAP2 depletion results in a loss of TelAP1 colocalization with TbTRF in BSF. In conclusion, this study demonstrates that characterizing potential TelAPs is effective in gaining insights into the telomeric complex's composition and its role in VSG regulation in Trypanosoma brucei. Understanding these interactions could potentially lead to new therapeutic targets for combatting African trypanosomiasis.}, subject = {Telomer }, language = {en} } @phdthesis{Nirchal2024, author = {Nirchal, Naveen Kumar}, title = {Mechanistische Regulierung des gastro{\"o}sophagealen {\"U}bergangs und die Rolle der Retins{\"a}ure bei der Entwicklung des Barrett-{\"O}sophagus}, doi = {10.25972/OPUS-31155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311556}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Der gastro{\"o}sophageale {\"U}bergang (GEJ), der die Region abgrenzt, in der der distale {\"O}sophagus auf die proximale Magenregion trifft, ist bekannt f{\"u}r die Entwicklung pathologischer Zust{\"a}nde, wie Metaplasie und Adenokarzinom des {\"O}sophagus (EAC). Es ist wichtig, die Mechanismen der Entwicklungsstadien zu verstehen, die zu EAC f{\"u}hren, da die Inzidenzrate von EAC in den letzten 4 Jahrzehnten um das 7-fache gestiegen ist und die Gesamt{\"u}berlebensrate von 5 Jahren 18,4 \% betr{\"a}gt. In den meisten F{\"a}llenwird die Diagnose im fortgeschrittenen Stadium ohne vorherige Symptome erstellt. Der Hauptvorl{\"a}ufer f{\"u}r die Entwicklung von EAC ist eine pr{\"a}maligne Vorstufe namens Barrett-{\"O}sophagus (BE). BE ist der metaplastische Zustand, bei dem das mehrschichtige Plattenepithel des nativen {\"O}sophagus durch ein spezialisiertes einschichtiges S{\"a}ulenepithel ersetzt wird, das die molekularen Eigenschaften des Magen- sowie des Darmepithels aufweist. Zu den wichtigsten Risikofaktoren f{\"u}r die Entwicklung von BE geh{\"o}ren die chronische gastro{\"o}sophageale Refluxkrankheit (GERD), eine ver{\"a}nderte Mikrobiota und ver{\"a}nderte Retins{\"a}ure-Signalwege (RA). Es ist unklar, welche Zelle der Ursprung f{\"u}r BE ist, da es keine eindeutigen Beweisen f{\"u}r den Prozess der BE-Initiation gibt. In dieser Arbeit habe ich untersucht, wie die GEJ-Hom{\"o}ostase in gesundem Gewebe durch stammzellregulatorische Morphogene aufrechterhalten wird, welche Rolle der Vitamin-A (RA-Signal{\"u}bertragung) spieltund wie ihre Ver{\"a}nderung zur BE-Entwicklung beitr{\"a}gt. Im ersten Teil meiner Dissertation habe ich anhand von Einzelmolek{\"u}l-RNA in situ-Hybridisierung und Immunhistochemie eindeutig das Vorhandensein von zwei Arten von Epithelzellen nachweisen k{\"o}nnen, dem Plattenepithel in der Speiser{\"o}hre und dem S{\"a}ulenepithel imMagenbereich des GEJ. Mittels Abstammungsanalysen im Mausmodell konnte ich zeigen, dass die Epithelzellen des {\"O}sophagus und des Magens von zwei verschiedenen epithelialen Stammzelllinien imGEJ abstammen. Die Grenze zwischen Plattenepithel und S{\"a}ulenepithelzellen im SCJ des GEJ wirddurch gegens{\"a}tzliche Wnt-Mikroumgebungen streng reguliert. Plattenepithelstammzellen des {\"O}sophagus werden durch das Wnt-hemmende Mikroumgebungssignal aufrechterhalten, w{\"a}hrend Magens{\"a}ulenepithelzellen durch das Wnt-aktivierende Signal aus dem Stromakompartiment erhalten werden. Ich habe die in vivo Erhaltung der Epithelstammzellen des GEJ mit Hilfe eines in vitro Epithel-3D-Organoidkulturmodells rekonstruiert. Das Wachstum und die Vermehrung von Magens{\"a}ulenepithel-Organoiden h{\"a}ngen von Wnt-Wachstumsfaktoren ab, w{\"a}hrend das Wachstum von Plattenepithel-Organoiden von Wnt-defizienten Kulturbedingungen abh{\"a}ngt. Dar{\"u}ber hinaus zeigte die Einzelzell-RNA-Sequenzanalyse (scRNA-seq) der aus Organoiden gewonnenenEpithelzellen, dass der nicht-kanonische Wnt/ planar cell polarity (PCP) Signalweg an der Regulierung der Plattenepithelzellen beteiligt ist. Im Gegensatz dazu werden s{\"a}ulenf{\"o}rmige Magenepithelzellen durch den kanonischen Wnt/beta-Catenin- und den nicht-kanonischen Wnt/Ca2+-Weg reguliert. Meine Daten zeigen, dass die SCJ-Epithelzellen, die am GEJ verschmelzen, durch entgegengesetzte stromale Wnt-Faktoren und unterschiedliche Wnt-Weg-Signalee in den Epithelzellen reguliert werden. Im zweiten Teil der Dissertation untersuchte ich die Rolle der bioaktiven Vitamin A Verbindung RA auf {\"O}sophagus- und Magenepithelstammzellen. Die In-vitro-Behandlung von epithelialen Organoiden der Speiser{\"o}hre und des Magens mitRA oder seinem pharmakologischen Inhibitors BMS 493 zeigte, dass jeder Zelltyp unterschiedlich reguliert wurde. Ich beobachtete, dass eine verst{\"a}rkte RA die Differenzierung von Stammzellen und den Verlust der Schichtung f{\"o}rderte, w{\"a}hrend die RA-Hemmung zu einer verst{\"a}rkten Stammzellbildung und Regeneration im mehrschichtigen Epithel der Speiser{\"o}hre f{\"u}hrte. Im Gegensatz zur Speiser{\"o}hre ist der RA-Signalweg in Magen-Organoiden aktiv, und die Hemmung von RA hat ein reduziertes Wachstum von Magen-Organoiden. Globale transkriptomische Daten und scRNA-seq-Daten zeigten, dass derRA-Signalweg einen Ruheph{\"a}notyp in den {\"O}sophaguszellen induziert. Dagegen f{\"u}hrt das Fehlen von RA in Magenepithelzellen zur Expression von Genen, die mit BE assoziiert sind. Daher isteine r{\"a}umlich definierte Regulation der Wnt- und Retins{\"a}ure-Signalgebung amGEJ entscheidend f{\"u}r eine gesunde Hom{\"o}ostase, und ihre St{\"o}rung f{\"u}hrt zur Entwicklung von Krankheiten.}, subject = {Retinoes{\"a}ure}, language = {en} } @phdthesis{Koenig2024, author = {K{\"o}nig, Sebastian Thomas}, title = {Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps)}, doi = {10.25972/OPUS-35460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354608}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth's ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species' traits, antagonistic biotic interactions, and even species' microbial mutualists may determine temperature-dependent assembly processes, the lion's share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the 'altitudinal niche-breadth hypothesis', species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion \& Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant-herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches.}, subject = {Heuschrecken}, language = {en} } @phdthesis{MaierverhHartmann2024, author = {Maier [verh. Hartmann], Carina Ramona}, title = {Regulation of the Mevalonate Pathway by the Deubiquitinase USP28 in Squamous Cancer}, doi = {10.25972/OPUS-34874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348740}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The reprogramming of metabolic pathways is a hallmark of cancer: Tumour cells are dependent on the supply with metabolites and building blocks to fulfil their increased need as highly proliferating cells. Especially de novo synthesis pathways are upregulated when the cells of the growing tumours are not able to satisfy the required metabolic levels by uptake from the environment. De novo synthesis pathways are often under the control of master transcription factors which regulate the gene expression of enzymes involved in the synthesis process. The master regulators for de novo fatty acid synthesis and cholesterogenesis are sterol regulatory element-binding proteins (SREBPs). While SREBP1 preferably controls the expression of enzymes involved in fatty acid synthesis, SREBP2 regulates the transcription of the enzymes of the mevalonate pathway and downstream processes namely cholesterol, isoprenoids and building blocks for ubiquinone synthesis. SREBP activity is tightly regulated at different levels: The post-translational modification by ubiquitination decreases the stability of active SREBPs. The attachment of K48-linked ubiquitin chains marks the transcription factors for the proteasomal degradation. In tumour cells, high levels of active SREBPs are essential for the upregulation of the respective metabolic pathways. The increased stability and activity of SREBPs were investigated in this thesis. SREBPs are ubiquitinated by the E3 ligase Fbw7 which leads to the subsequential proteolysis of the transcription factors. The work conducted in this thesis identified the counteracting deubiquitination enzyme USP28 which removes the ubiquitin chains from SREBPs and prevents their proteasomal degradation. It further revealed that the stabilization of SREBP2 by USP28 plays an important role in the context of squamous cancers. Increased USP28 levels are associated with a poor survival in patients with squamous tumour subtypes. It was shown that reduced USP28 levels in cell lines and in vivo result in a decrease of SREBP2 activity and downregulation of the mevalonate pathway. This manipulation led to reduced proliferation and tumour growth. A direct comparison of adenocarcinomas and squamous cell carcinomas in lung cancer patients revealed an upregulation of USP28 as well as SREBP2 and its target genes. Targeting the USP28-SREBP2 regulatory axis in squamous cell lines by inhibitors also reduced cell viability and proliferation. In conclusion, this study reports evidence for the importance of the mevalonate pathway regulated by the USP28-SREBP2 axis in tumour initiation and progression of squamous cancer. The combinatorial inhibitor treatment of USP28 and HMGCR, the rate limiting enzyme of the mevalonate pathway, by statins opens the possibility for a targeted therapeutic treatment of squamous cancer patients.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Pitsch2024, author = {Pitsch, Maximilian Jonathan}, title = {Zyklisches Adenosinmonophosphat (cAMP) als {\"A}quivalent akkumulierter neuronaler Evidenz}, doi = {10.25972/OPUS-35129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die vier Crz-Neurone des ventralen Nervensystems von Drosophila melanogaster sammeln Evidenz, wann im Rahmen eines Paarungsakts zirka 6 Minuten vergangen sind. Diese Entscheidung ist f{\"u}r die m{\"a}nnliche Fliege von Bedeutung, da das M{\"a}nnchen vor Ablauf dieser ~6 Minuten, welche den Zeitpunkt der Ejakulation darstellen, eher das eigene Leben opfern w{\"u}rde, als dass es die Paarung beenden w{\"u}rde. Nach Ablauf der ~6 Minuten f{\"a}llt die Motivation des M{\"a}nnchens dagegen dramatisch ab. Im Rahmen der vorliegenden Arbeit wurde zun{\"a}chst mittels optogenetischer neuronaler Inhibitionsprotokolle sowie Verhaltensanalysen das Ph{\"a}nomen der Evidenz-akkumulation in den Crz-Neuronen genauer charakterisiert. Dabei zeigte sich, dass die akkumulierte Evidenz auch w{\"a}hrend einer elektrischen Inhibition der Crz-Neurone persistierte. Dieses Ergebnis warf die Hypothese auf, dass das {\"A}quivalent der akkumulierten Evidenz in den Crz-Neuronen biochemischer Natur sein k{\"o}nnte. Es wurde daraufhin ein Hochdurchsatzscreening-Verfahren entwickelt, mittels dessen 1388 genetische Manipulationen der Crz-Neurone durchgef{\"u}hrt und auf eine {\"A}nderung der Evidenzakkumulation getestet wurden. Nur ~30 genetische Manipulationen zeigten eine ver{\"a}nderte Evidenzakkumulation, wobei die meisten dieser Manipulationen den cAMP-Signalweg betrafen. Mittels der optogenetischen Photoadenylatzyklase bPAC, einer Reihe weiterer genetischer Manipulationen des cAMP-Signalwegs sowie der ex vivo Kalzium-Bildgebung und Fluoreszenzlebensdauer-Mikroskopie konnte best{\"a}tigt werden, dass cAMP das {\"A}quivalent der in den Crz-Neuronen spannungsabh{\"a}ngig akkumulierten Evidenz darstellt, wobei die Kombination dieser Methoden nahelegte, dass der Schwellenwert der Evidenzakkumulation durch die cAMP-Bindungsaffinit{\"a}t der regulatorischen PKA-Untereinheiten festgelegt sein k{\"o}nnte. Mittels genetischer Mosaikexperimente sowie bildgebenden Verfahren konnte dar{\"u}ber hinaus gezeigt werden, dass innerhalb des Crz-Netzwerks eine positive R{\"u}ckkopplungsschleife aus rekurrenter Aktivit{\"a}t sowie der cAMP-Akkumulation besteht, welche, sobald die cAMP-Spiegel den Schwellenwert erreichen, zu einem netzwerkweit synchronisierten massiven Kalziumeinstrom f{\"u}hrt, was die Abgabe des Crz-Signals an nachgeschaltete Netzwerke triggert. Dieses Ph{\"a}nomen k{\"o}nnte ein Analogon des Aktionspotenzials auf Netzwerkebene sowie auf Intervallzeitskalen darstellen und wurde als „Eruption" bezeichnet. Genetische, optogenetische sowie Bildgebungsexperimente konnten zeigen, dass die CaMKII derartige Eruptionen durch Niedrighalten der cAMP-Spiegel unterdr{\"u}ckt, was den Zeitmessmechanismus des ersten beschriebenen Intervallzeitmessers CaMKII offenlegt.}, subject = {Evidenz}, language = {de} } @phdthesis{BakariSoale2024, author = {Bakari Soale, Majeed}, title = {Regulation of the Variant Surface Glycoprotein (VSG) Expression and Characterisation of the Nucleolar DExD/H box Protein Hel66 in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-25809}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The variant surface glycoprotein (VSG) of African trypanosomes plays an essential role in protecting the parasites from host immune factors. These trypanosomes undergo antigenic variation resulting in the expression of a single VSG isoform out of a repertoire of around 2000 genes. The molecular mechanism central to the expression and regulation of the VSG is however not fully understood. Gene expression in trypanosomes is unusual due to the absence of typical RNA polymerase II promoters and the polycistronic transcription of genes. The regulation of gene expression is therefore mainly post-transcriptional. Regulatory sequences, mostly present in the 3´ UTRs, often serve as key elements in the modulation of the levels of individual mRNAs. In T. brucei VSG genes, a 100 \% conserved 16mer motif within the 3´ UTR has been shown to modulate the stability of VSG transcripts and hence their expression. As a stability-associated sequence element, the absence of nucleotide substitutions in the motif is however unusual. It was therefore hypothesised that the motif is involved in other essential roles/processes besides stability of the VSG transcripts. In this study, it was demonstrated that the 100 \% conservation of the 16mer motif is not essential for cell viability or for the maintenance of functional VSG protein levels. It was further shown that the intact motif in the active VSG 3´ UTR is neither required to promote VSG silencing during switching nor is it needed during differentiation from bloodstream forms to procyclic forms. Crosstalk between the VSG and procyclin genes during differentiation to the insect vector stage is also unaffected in cells with a mutated 16mer motif. Ectopic overexpression of a second VSG however requires the intact motif to trigger silencing and exchange of the active VSG, suggesting a role for the motif in transcriptional VSG switching. The 16mer motif therefore plays a dual role in VSG in situ switching and stability of VSG transcripts. The additional role of the 16mer in the essential process of antigenic variation appears to be the driving force for the 100 \% conservation of this RNA motif. A screen aimed at identifying candidate RNA-binding proteins interacting with the 16mer motif, led to the identification of a DExD/H box protein, Hel66. Although the protein did not appear to have a direct link to the 16mer regulation of VSG expression, the DExD/H family of proteins are important players in the process of ribosome biogenesis. This process is relatively understudied in trypanosomes and so this candidate was singled out for detailed characterisation, given that the 16mer story had reached a natural end point. Ribosome biogenesis is a major cellular process in eukaryotes involving ribosomal RNA, ribosomal proteins and several non-ribosomal trans-acting protein factors. The DExD/H box proteins are the most important trans-acting protein factors involved in the biosynthesis of ribosomes. Several DExD/H box proteins have been directly implicated in this process in yeast. In trypanosomes, very few of this family of proteins have been characterised and therefore little is known about the specific roles they play in RNA metabolism. Here, it was shown that Hel66 is involved in rRNA processing during ribosome biogenesis. Hel66 localises to the nucleolus and depleting the protein led to a severe growth defect. Loss of the protein also resulted in a reduced rate of global translation and accumulation of rRNA processing intermediates of both the small and large ribosomal subunits. Hel66 is therefore an essential nucleolar DExD/H protein involved in rRNA processing during ribosome biogenesis. As very few protein factors involved in the processing of rRNAs have been described in trypanosomes, this finding represents an important platform for future investigation of this topic.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Helmerich2023, author = {Helmerich, Dominic Andreas}, title = {Einfl{\"u}sse der Photophysik und Photochemie von Cyaninfarbstoffen auf die Lokalisationsmikroskopie}, doi = {10.25972/OPUS-24716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In den letzten Jahren haben sich hochaufl{\"o}sende Fluoreszenzmikroskopiemethoden, basierend auf der Lokalisation einzelner Fluorophore, zu einem leistungsstarken Werkzeug etabliert, um Fluoreszenzbilder weit unterhalb der Aufl{\"o}sungsgrenze zu generieren. Hiermit k{\"o}nnen r{\"a}umliche Aufl{\"o}sungen von ~ 20 nm erzielt werden, was weit unterhalb der Beugungsgrenze liegt. Dabei haben zahlreiche Optimierungen und Entwicklungen neuer Methoden in der Einzelmolek{\"u}l-Lokalisationsmikroskopie die Genauigkeit der orstspezifischen Bestimmung einzelner Fluorophore auf bis zu ~ 1 - 3 nm erh{\"o}ht. Eine Aufl{\"o}sung im molekularen Bereich, weit unterhalb von ~ 10 nm bleibt allerdings herausfordernd, da die Lokalisationsgenauigkeit nur ein Kriterium hierf{\"u}r ist. Allerdings wurde sich in den letzten Jahren {\"u}berwiegend auf die Verbesserung dieses Parameters konzentriert. Weitere Kriterien f{\"u}r die fluoreszenzmikroskopische Aufl{\"o}sung sind dabei unter anderem die Markierungsdichte und die Kopplungseffizienz der Zielstruktur, sowie der Kopplungsfehler (Abstand zur Zielstruktur nach Farbstoffkopplung), die sich herausfordernd f{\"u}r eine molekulare Aufl{\"o}sung darstellen. Auch wenn die Kopplungseffizienz und -dichte hoch und der Kopplungsfehler gering ist, steigt bei Interfluorophordistanzen < 5nm, abh{\"a}ngig von den Farbstoffen, die Wahrscheinlichkeit von starken und schwachen Farbstoffwechselwirkungen und damit von Energie{\"u}bertragungsprozessen zwischen den Farbstoffen, stark an. Daneben sollten Farbstoffe, abh{\"a}nging von der Lokalisationsmikroskopiemethode, spezifische Kriterien, wie beispielsweise die Photoschaltbarkeit bei dSTORM, erf{\"u}llen, was dazu f{\"u}hrt, dass diese Methoden h{\"a}ufig nur auf einzelne Farbstoffe beschr{\"a}nkt sind. In dieser Arbeit konnte mithilfe von definierten DNA-Origami Konstrukten gezeigt werden, dass das Blinkverhalten von Cyaninfarbstoffen unter dSTORM-Bedingungen einer Abstandsabh{\"a}ngigkeit aufgrund von spezifischen Energie{\"u}bertragungsprozessen folgt, womit Farbstoffabst{\"a}nde im sub-10 nm Bereich charakterisiert werden konnten. Dar{\"u}ber hinaus konnte diese Abstandsabh{\"a}ngigkeit an biologischen Proben gezeigt werden. Hierbei konnten verschiedene zellul{\"a}re Rezeptoren effizient und mit geringem Abstandsfehler zur Zielstruktur mit Cyaninfarbstoffen gekoppelt werden. Diese abstandsabh{\"a}nigen Prozesse und damit Charakterisierungen k{\"o}nnten dabei nicht nur spezifisch f{\"u}r die h{\"a}ufig unter dSTORM-Bedingungen verwendeten Cyaninfarbstoffen g{\"u}ltig sein, sondern auch auf andere Farbstoffklassen, die einen Auszustand zeigen, {\"u}bertragbar sein. Dar{\"u}ber hinaus konnte gezeigt werden, dass hochaufl{\"o}sende dSTORM Aufnahmen unabh{\"a}ngig vom Farbstoffkopplungsgrad der Antik{\"o}rpern sind, welche h{\"a}ufig f{\"u}r Standardf{\"a}rbungen von zellul{\"a}ren Strukturen verwendet werden. Dabei konnte durch Photonenkoinzidenzmessungen dargelegt werden, dass aufgrund komplexer Farbstoffwechselwirkungen im Mittel nur ein Farbstoff aktiv ist, wobei h{\"o}here Kopplungsgrade ein komplexes Blinkverhalten zu Beginn der Messung zeigen. Durch die undefinierten Farbstoffabst{\"a}nde an Antik{\"o}rpern konnte hier kein eindeutiger Energie{\"u}bertragungsmechanismus entschl{\"u}sselt werden. Dennoch konnte gezeigt werden, dass Farbstoffaggregate bzw. H-Dimere unter dSTORM-Bedingungen destabilisiert werden. Durch die zuvor erw{\"a}hnten DNA-Origami Konstrukte definierter Interfluorophordistanzen konnten Energie{\"u}bertragungsmechanismen entschl{\"u}sselt werden, die auch f{\"u}r die Antik{\"o}rper diverser Kopplungsgrade g{\"u}ltig sind. Des Weiteren konnten, ausgel{\"o}st durch komplexe Energie{\"u}bertragungsprozesse h{\"o}herer Kopplungsgrade am Antik{\"o}rper, Mehrfarbenaufnahmen zellul{\"a}rer Strukturen generiert werden, die {\"u}ber die spezifische Fluoreszenzlebenszeit separiert werden konnten. Dies stellt hier eine weitere M{\"o}glichkeit dar, unter einfachen Bedingungen, schnelle Mehrfarbenaufnahmen zellul{\"a}rer Strukturen zu generieren. Durch die Verwendung des selben Farbstoffes unterschiedlicher Kopplungsgrade kann hier nur mit einer Anregungswellenl{\"a}nge und frei von chromatischer Aberration gearbeitet werden. Neben den photophysikalischen Untersuchungen der Cyaninfarbstoffe Cy5 und Alexa Fluor 647 wurden diese ebenso photochemisch n{\"a}her betrachtet. Dabei konnte ein neuartiger chemischer Mechanismus entschl{\"u}sselt werden. Dieser Mechanismus f{\"u}hrt, ausgel{\"o}st durch Singulett-Sauerstoff (1O2), zu einer Photozerschneidung des konjugierten Doppelbindungssystems um zwei Kohlenstoffatome, was zu strukturellen und spektroskopischen Ver{\"a}nderungen dieser Farbstoffe f{\"u}hrt. Auf Grundlage dieses Mechanismus konnte eine neue DNA-PAINT Methode entwickelt werden, die zu einer Beschleunigung der Aufnahmezeit f{\"u}hrt.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {de} } @phdthesis{WasgebHouben2023, author = {Was [geb. Houben], Nina}, title = {Die Rolle der nicht-kodierenden RNAs miR-26 und \(Malat1\) bei der \(in\) \(vitro\) Differenzierung zu Neuronen}, doi = {10.25972/OPUS-30371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303714}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {W{\"a}hrend der embryonalen Neurogenese spielt die Repression neuraler Gene in nicht neuralen Zellen, sowie in neuralen Vorl{\"a}uferzellen durch den REST (repressor element silencing transcription factor)-Komplex eine wichtige Rolle. Durch die schrittweise Inaktivierung diese Komplexes im Verlauf der Differenzierung werden neurale Genexpressionsprogramme gesteuert. Zus{\"a}tzlich kommt bei der Kontrolle der r{\"a}umlichen und zeitlichen Regulation der Genexpression w{\"a}hrend der Neurogenese verschiedenen miRNAs eine wichtige Rolle zu. So konnte in vorangegangenen Arbeiten im Zebrafischen gezeigt werden, dass miR-26b die Transkription eines wichtigen Effektorproteins des REST-Komplexes, CTDSP2 (C-terminal domain small phosphatases), w{\"a}hrend der Neurogenese negativ reguliert. Da dar{\"u}ber hinaus die miR-26 Repression zu einer stark verminderten neuronalen Differenzierung f{\"u}hrte, kommt diesem regulatorischen Schaltkreis eine zentrale Rolle bei der Neurogenese im Zebrafisch zu. Die zusammen mit ihren Ctdsp-Wirtsgenen koexprimierte miR-26 Familie liegt in Vertebraten evolution{\"a}r hoch konserviert vor. Analog zum Zebrafisch konnte im murinen in vitro ES-Zell Differenzierungssystem gezeigt werden, dass miR-26 die Expression von Ctdsp2 reprimiert. Weiterhin konnte in diesem System gezeigt werden, dass auch Rest ein miR-26 Zielgen ist und dass der Verlust der miR-26 zu einem Arrest der differenzierenden Zellen im neuronalen Vorl{\"a}uferstadium f{\"u}hrt. Zusammengenommen deuten diese vorangegangenen Arbeiten auf eine zentrale Rolle der miR-26 w{\"a}hrend der Neurogenese hin. Die hier vorgestellte Arbeit zielte zun{\"a}chst darauf ab die Regulation des REST-Komplexes durch die miR-26 auf molekularer Ebene besser zu verstehen. Der Verlust der miR-26 Bindestelle in der Ctdsp2 mRNA f{\"u}hrte zu einer erh{\"o}hten Ctdsp2 Expression, beeinflusste aber nicht die terminale Differenzierung zu Neuronen. Im Gegensatz hierzu f{\"u}hrte der Verlust der miR-26 Bindestelle in der Rest mRNA zu einem Arrest der Differenzierung im neuralen Vorl{\"a}uferzellstadium. Zellen in denen die miR-26 Bindestelle in Rest deletiert war, zeigten zudem, genau wie miR-26 knockout (KO) Zellen, eine erh{\"o}hte Expression von REST-Komplex Komponenten, sowie eine verringerte Expression von REST-regulierten miRNAs. Zusammengenommen weisen diese Daten daraufhin, dass w{\"a}hrend der Neurogenese im S{\"a}ugersystem die Inaktivierung von Rest durch miR-26 f{\"u}r die Maturierung von Neuronen eine zentrale Rolle spielt. Ein weiterer Fokus dieser Arbeit lag auf der Regulation der miR-26 Expression w{\"a}hrend der Neurogenese. Vorangegangene Arbeiten in nicht-neuronalen Zelltypen identifizierten die lnc (long-non-coding) RNA Malat1 als eine ce (competitive endogenous) RNA der miR-26. Um den Einfluss von Malat1 auf die miR-26 Expression w{\"a}hrend der Neurogenese zu untersuchen, wurde zun{\"a}chst mittels CRISPR/Cas9 der vollst{\"a}ndige Malat1-Lokus in ESCs deletiert. Der Verlust von Malat1 f{\"u}hrte zu einer erh{\"o}hten Expression der miR-26 Familienmitglieder sowie deren Ctdsp-Wirtsgene. Weiterhin war die Proliferation von Malat1 KO neuronalen Vorl{\"a}uferzellen stark vermindert, was mit einer Erh{\"o}hung der Frequenz seneszenter Zellen einherging. Durch die Inaktivierung von miR-26 in differenzierenden Malat1 KO ESCs konnte dieser proliferative Ph{\"a}notyp aufgehoben werden. Dar{\"u}ber hinaus konnte eine verst{\"a}rkte neuronale Differenzierung dieser Zellen beobachtet werden. Zusammenfassend zeigen diese Daten, dass neben der Regulation des REST-Komplexes durch miR-26 auch die Kontrolle des Zellzyklus {\"u}ber die Malat1-vermittelte Regulation der miR-26 in neuronalen Vorl{\"a}uferzellen einen kritischen Schritt bei der Differenzierung von neuronalen Vorl{\"a}uferzellen zu maturen Neuronen darstellt.}, subject = {Neurogenese}, language = {de} } @article{RackeveiKarnkowskaWolf2023, author = {Rackevei, Antonia S. and Karnkowska, Anna and Wolf, Matthias}, title = {18S rDNA sequence-structure phylogeny of the Euglenophyceae (Euglenozoa, Euglenida)}, series = {Journal of Eukaryotic Microbiology}, volume = {70}, journal = {Journal of Eukaryotic Microbiology}, number = {2}, doi = {10.1111/jeu.12959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311896}, year = {2023}, abstract = {The phylogeny of Euglenophyceae (Euglenozoa, Euglenida) has been discussed for decades with new genera being described in the last few years. In this study, we reconstruct a phylogeny using 18S rDNA sequence and structural data simultaneously. Using homology modeling, individual secondary structures were predicted. Sequence-structure data are encoded and automatically aligned. Here, we present a sequence-structure neighbor-joining tree of more than 300 taxa classified as Euglenophyceae. Profile neighbor-joining was used to resolve the basal branching pattern. Neighbor-joining, maximum parsimony, and maximum likelihood analyses were performed using sequence-structure information for manually chosen subsets. All analyses supported the monophyly of Eutreptiella, Discoplastis, Lepocinclis, Strombomonas, Cryptoglena, Monomorphina, Euglenaria, and Colacium. Well-supported topologies were generally consistent with previous studies using a combined dataset of genetic markers. Our study supports the simultaneous use of sequence and structural data to reconstruct more accurate and robust trees. The average bootstrap value is significantly higher than the average bootstrap value obtained from sequence-only analyses, which is promising for resolving relationships between more closely related taxa.}, language = {en} } @article{KernerKraussMaihoffetal.2023, author = {Kerner, Janika M. and Krauss, Jochen and Maihoff, Fabienne and Bofinger, Lukas and Classen, Alice}, title = {Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants}, series = {Ecology}, volume = {104}, journal = {Ecology}, number = {1}, doi = {10.1002/ecy.3848}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312015}, year = {2023}, abstract = {Despite sometimes strong codependencies of insect herbivores and plants, the responses of individual taxa to accelerating climate change are typically studied in isolation. For this reason, biotic interactions that potentially limit species in tracking their preferred climatic niches are ignored. Here, we chose butterflies as a prominent representative of herbivorous insects to investigate the impacts of temperature changes and their larval host plant distributions along a 1.4-km elevational gradient in the German Alps. Following a sampling protocol of 2009, we revisited 33 grassland plots in 2019 over an entire growing season. We quantified changes in butterfly abundance and richness by repeated transect walks on each plot and disentangled the direct and indirect effects of locally assessed temperature, site management, and larval and adult food resource availability on these patterns. Additionally, we determined elevational range shifts of butterflies and host plants at both the community and species level. Comparing the two sampled years (2009 and 2019), we found a severe decline in butterfly abundance and a clear upward shift of butterflies along the elevational gradient. We detected shifts in the peak of species richness, community composition, and at the species level, whereby mountainous species shifted particularly strongly. In contrast, host plants showed barely any change, neither in connection with species richness nor individual species shifts. Further, temperature and host plant richness were the main drivers of butterfly richness, with change in temperature best explaining the change in richness over time. We concluded that host plants were not yet hindering butterfly species and communities from shifting upwards. However, the mismatch between butterfly and host plant shifts might become a problem for this very close plant-herbivore relationship, especially toward higher elevations, if butterflies fail to adapt to new host plants. Further, our results support the value of conserving traditional extensive pasture use as a promoter of host plant and, hence, butterfly richness.}, language = {en} } @article{FrickeRedlichZhangetal.2023, author = {Fricke, Ute and Redlich, Sarah and Zhang, Jie and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and Steffan-Dewenter, Ingolf}, title = {Earlier flowering of winter oilseed rape compensates for higher pest pressure in warmer climates}, series = {Journal of Applied Ecology}, volume = {60}, journal = {Journal of Applied Ecology}, number = {2}, doi = {10.1111/1365-2664.14335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312562}, pages = {365 -- 375}, year = {2023}, abstract = {Global warming can increase insect pest pressure by enhancing reproductive rates. Whether this translates into yield losses depends on phenological synchronisation of pests with their host plants and natural enemies. Simultaneously, landscape composition may mitigate climate effects by shaping the resource availability for pests and their antagonists. Here, we study the combined effects of temperature and landscape composition on pest abundances, larval parasitism, crop damage and yield, while also considering crop phenology, to identify strategies for sustainable management of oilseed rape (OSR) pests under warming climates. In all, 29 winter OSR crop fields were investigated in different climates (defined by multi-annual mean temperature, MAT) and landscape contexts in Bavaria, Germany. We measured abundances of adult pollen beetles and stem weevil larvae, pollen beetle larval parasitism, bud loss, stem damage and seed yield, and calculated the flowering date from growth stage observations. Landscape parameters (proportion of non-crop and OSR area, change in OSR area relative to the previous year) were calculated at six spatial scales (0.6-5 km). Pollen beetle abundance increased with MAT but to different degrees depending on the landscape context, that is, increased less strongly when OSR proportions were high (1-km scale), interannually constant (5-km scale) or both. In contrast, stem weevil abundance and stem damage did not respond to landscape composition nor MAT. Pollen beetle larval parasitism was overall low, but occasionally exceeded 30\% under both low and high MAT and with reduced OSR area (0.6-km scale). Despite high pollen beetle abundance in warm climates, yields were high when OSR flowered early. Thereby, higher temperatures favoured early flowering. Only among late-flowering OSR crop fields yield was higher in cooler than warmer climates. Bud loss responded analogously. Landscape composition did not substantially affect bud loss and yield. Synthesis and applications: Earlier flowering of winter OSR compensates for higher pollen beetle abundance in warmer climates, while interannual continuity of OSR area prevents high pollen beetle abundance in the first place. Thus, regional coordination of crop rotation and crop management promoting early flowering may contribute to sustainable pest management in OSR under current and future climatic conditions.}, language = {en} } @article{GrausLiRathjeetal.2023, author = {Graus, Dorothea and Li, Kunkun and Rathje, Jan M. and Ding, Meiqi and Krischke, Markus and M{\"u}ller, Martin J. and Cuin, Tracey Ann and Al-Rasheid, Khaled A. S. and Scherzer, S{\"o}nke and Marten, Irene and Konrad, Kai R. and Hedrich, Rainer}, title = {Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling}, series = {New Phytologist}, volume = {237}, journal = {New Phytologist}, number = {1}, doi = {10.1111/nph.18501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312152}, pages = {217 -- 231}, year = {2023}, abstract = {Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)-exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {A modified inflation cosmology relying on qubit-crystallization: rare qubit interactions trigger qubit ensemble growth and crystallization into "real" bit-ensembles and emergent time}, doi = {10.25972/OPUS-32177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321777}, pages = {42}, year = {2023}, abstract = {In a modified inflation scenario we replace the "big bang" by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) - the crystal unit cell guarantees same symmetries everywhere. Hence, the textbook inflation scenario to explain the same laws of nature in our domain is replaced by the crystal unit cell of the crystal formed. We give here only the perspective or outline of this modified inflation theory, as the detailed mathematical physics behind this has still to be formulated and described. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, but more importantly can explain well by such a type of cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: no annihilation of antimatter necessary, rather the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove a triggering of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, this means that in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below h dash liquidity left). However, the E8 symmetry of heterotic string theory has six rolled-up, small dimensions which help to keep the qubit crystal together and will never expand. Finally, we give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field in the crystal. Hence, vacuum energy gets low inside the qubit crystal. Condensed mathematics may advantageously help to model free (many states denote the same qubit) and bound qubits in phase space.}, language = {en} } @article{DieboldSchoenemannEilersetal.2023, author = {Diebold, Mathias and Sch{\"o}nemann, Lars and Eilers, Martin and Sotriffer, Christoph and Schindelin, Hermann}, title = {Crystal structure of a covalently linked Aurora-A-MYCN complex}, series = {Acta Crystallographica}, volume = {D79}, journal = {Acta Crystallographica}, doi = {10.1107/s2059798322011433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318855}, pages = {1 -- 9}, year = {2023}, abstract = {Formation of the Aurora-A-MYCN complex increases levels of the oncogenic transcription factor MYCN in neuroblastoma cells by abrogating its degradation through the ubiquitin proteasome system. While some small-molecule inhibitors of Aurora-A were shown to destabilize MYCN, clinical trials have not been satisfactory to date. MYCN itself is considered to be `undruggable' due to its large intrinsically disordered regions. Targeting the Aurora-A-MYCN complex rather than Aurora-A or MYCN alone will open new possibilities for drug development and screening campaigns. To overcome the challenges that a ternary system composed of Aurora-A, MYCN and a small molecule entails, a covalently cross-linked construct of the Aurora-A-MYCN complex was designed, expressed and characterized, thus enabling screening and design campaigns to identify selective binders.}, language = {en} } @phdthesis{Petrov2023, author = {Petrov, Ivan}, title = {Combinational therapy of tumors in syngeneic mouse tumor models with oncolytic Vaccinia virus strains expressing IL-2 and INF-g. Human adipose tissue-derived stem cell mediated delivery of oncolytic Vaccinia virus}, doi = {10.25972/OPUS-27355}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cancer is one of the leading causes of death worldwide, with currently assessed chances to develop at least one cancer in a lifetime for about 20\%. High cases rates and mortality require the development of new anticancer therapies and treatment strategies. Another important concern is toxicity normally associated with conventional therapy methods, such as chemo- and radiotherapy. Among many proposed antitumoral agents, oncolytic viruses are still one of the promising and fast-developing fields of research with almost a hundred studies published data on over 3000 patients since the beginning of the new millennia. Among all oncolytic viruses, the Vaccinia virus is arguably one of the safest, with an extremely long and prominent history of use, since it was the one and only vaccine used in the Smallpox Eradication Program in the 1970s. Interestingly enough, it was the first oncolytic virus proven to have tumor tropism in vitro and in vivo in laboratory settings, and this year we can celebrate an unofficial 100th anniversary since the publication of the fact. While being highly immunogenic, Vaccinia virus DNA replication takes place in the cytoplasm of the infected cell, and virus genes never integrate into the host genome. Another advantage of using Vaccinia as an oncolytic agent is its high genome capacity, which allows inserting up to 25 kbps of exogenous genes, thus allowing to additionally arm the virus against the tumor. Oncolytic virus action consists of two major parts: direct oncolysis and immune activation against the tumor, with the latter being the key to successful treatment. To this moment, preclinical research data are mostly generated in immunocompromised xenograft models, which have hurdles to be properly translated for clinical use. In the first part of the current study, fourteen different recombinant Vaccinia virus strains were tested in two different murine tumor cell lines and corresponding immunocompetent animal models. We found, that Copenhagen backbone Vaccinia viruses while being extremely effective in cell culture, do not show significant oncolytic efficacy in animals. In contrast, several of the LIVP backbone viruses tested (specifically, IL-2 expressing ones) have little replication ability when compared to the Copenhagen strain, but are able to significantly delay tumor growth and prolong survival of the treated animals. We have also noted cytokine related toxicity of the animals to be mouse strain specific. We have also tested the virus with the highest therapeutic benefit in combination with romidepsin and cyclophosphamide. While the combination with histone deacetylase inhibitor romidepsin did not result in therapeutic benefit in our settings, the addition of cyclophosphamide significantly improved the efficacy of the treatment, at the same time reducing cytokine-associated toxicity of the IL-2 expressing virus. In the second part of the work, we analyzed the ability of adipose-derived mesenchymal stem cells to serve as a carrier for the oncolytic Vaccinia virus. We showed for the first time that the cells can be infected with the virus and can generate virus progeny. They are also able to survive for a substantially long time and, when injected into the bloodstream of tumor-bearing animals, produce the virus that is colonizing the tumor. Analysis of the systemic distribution of the cells after injection revealed that infected and uninfected cells are not distributed in the same manner, possibly suggesting that infected cells are getting recognized and cleared by an impaired immune system of athymic mice faster than non-infected cells. Despite this, injection of virus-loaded adipose-derived mesenchymal stem cells to human A549 tumor-bearing xenograft mice resulted in rapid tumor regression and reduced virus-related side effects of the treatment when compared to injection of the naked virus. In conclusion, we have tested two different approaches to augmenting oncolytic Vaccinia virus therapy. First, the combination of recombinant Vaccinia virus expressing IL-2 and cyclophosphamide showed promising results in a syngeneic mouse model, despite the low permissivity of murine cells to the virus. Second, we loaded the oncolytic Vaccinia virus into mesenchymal stem cells and have proven that they can potentially serve as a vehicle for the virus.}, subject = {Vaccinia-virus}, language = {en} } @article{KaltdorfBreitenbachKarletal.2023, author = {Kaltdorf, Martin and Breitenbach, Tim and Karl, Stefan and Fuchs, Maximilian and Kessie, David Komla and Psota, Eric and Prelog, Martina and Sarukhanyan, Edita and Ebert, Regina and Jakob, Franz and Dandekar, Gudrun and Naseem, Muhammad and Liang, Chunguang and Dandekar, Thomas}, title = {Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-022-27098-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313303}, year = {2023}, abstract = {The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.}, language = {en} } @phdthesis{Nguyen2023, author = {Nguyen, Tu Anh Thi}, title = {Neural coding of different visual cues in the monarch butterfly sun compass}, doi = {10.25972/OPUS-30380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303807}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Monarch butterflies are famous for their annual long-distance migration. Decreasing temperatures and reduced daylight induce the migratory state in the autumn generation of monarch butterflies. Not only are they in a reproductive diapause, they also produce fat deposits to be prepared for the upcoming journey: Driven by their instinct to migrate, they depart from their eclosion grounds in the northern regions of the North American continent and start their southern journey to their hibernation spots in Central Mexico. The butterflies cover a distance of up to 4000 km across the United States. In the next spring, the same butterflies invert their preferred heading direction due to seasonal changes and start their northward spring migration. The spring migration is continued by three consecutive butterfly generations, until the animals repopulate the northern regions in North America as non-migratory monarch butterflies. The monarch butterflies' migratory state is genetically and epigenetically regulated, including the directed flight behavior. Therefore, the insect's internal compass system does not only have to encode the butterflies preferred, but also its current heading direction. However, the butterfly's internal heading representation has to be matched to external cues, to avoid departing from its initial flight path and increasing its risk of missing its desired destination. During the migratory flight, visual cues provide the butterflies with reliable orientation information. The butterflies refer to the sun as their main orientation cue. In addition to the sun, the butterflies likely use the polarization pattern of the sky for orientation. The sky compass signals are processed within a region in the brain, termed the central complex (CX). Previous research on the CX neural circuitry of the monarch butterflies demonstrated that tangential central complex neurons (TL) carry the visual input information into the CX and respond to a simulated sun and polarized light. However, whether these cells process additional visual cues like the panoramic skyline is still unknown. Furthermore, little is known about how the migratory state affects visual cue processing. In addition to this, most experiments studying the monarch butterfly CX focused on how neurons process single visual cues. However, how combined visual stimuli are processed in the CX is still unknown. This thesis is investigating the following questions: 1) How does the migratory state affect visual cue processing in the TL cells within the monarch butterfly brain? 2) How are multiple visual cues integrated in the TL cells? 3) How is compass information modulated in the CX? To study these questions, TL neurons from both animal groups (migratory and non-migratory) were electrophysiologically characterized using intracellular recordings while presenting different simulated celestial cues and visual sceneries. I showed that the TL neurons of migratory butterflies are more narrowly tuned to the sun, possibly helping them in keeping a directed flight course during migration. Furthermore, I found that TL cells encode a panoramic skyline, suggesting that the CX network combines celestial and terrestrial information. Experiments with combined celestial stimuli revealed that the TL cells combine both cue information linearly. However, if exposing the animals to a simulated visual scenery containing a panoramic skyline and a simulated sun, the single visual cues are weighted differently. These results indicate that the CX's input region can flexibly adapt to different visual cue conditions. Furthermore, I characterize a previously unknown neuron in the monarch butterfly CX which responds to celestial stimuli and connects the CX with other brain neuropiles. How this cell type affects heading direction encoding has yet to be determined.}, subject = {Monarchfalter}, language = {en} } @phdthesis{Solvie2023, author = {Solvie, Daniel Alexander}, title = {Molecular Mechanisms of MYC as Stress Resilience Factor}, doi = {10.25972/OPUS-30539}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305398}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cancer is one of the leading causes of death worldwide. The underlying tumorigenesis is driven by the accumulation of alterations in the genome, eventually disabling tumor suppressors and activating proto-oncogenes. The MYC family of proto-oncogenes shows a strong deregulation in the majority of tumor entities. However, the exact mechanisms that contribute to MYC-driven oncogenesis remain largely unknown. Over the past decades, the influence of the MYC protein on transcription became increasingly apparent and was thoroughly investigated. Additionally, in recent years several publications provided evidence for so far unreported functions of MYC that are independent of a mere regulation of target genes. These findings suggest an additional role of MYC in the maintenance of genomic stability and this role is strengthened by key findings presented in this thesis. In the first part, I present data revealing a pathway that allows MYC to couple transcription elongation and DNA double-strand break repair, preventing genomic instability of MYC-driven tumor cells. This pathway is driven by a rapid transfer of the PAF1 complex from MYC onto RNAPII, a process that is mediated by HUWE1. The transfer controls MYC-dependent transcription elongation and, simultaneously, the remodeling of chromatin structure by ubiquitylation of histone H2B. These regions of open chromatin favor not only elongation but also DNA double-strand break repair. In the second part, I analyze the ability of MYC proteins to form multimeric structures in response to perturbation of transcription and replication. The process of multimerization is also referred to as phase transition. The observed multimeric structures are located proximal to stalled replication forks and recruit factors of the DNA-damage response and transcription termination machinery. Further, I identified the HUWE1-dependent ubiquitylation of MYC as an essential step in this phase transition. Cells lacking the ability to form multimers display genomic instability and ultimately undergo apoptosis in response to replication stress. Both mechanisms present MYC as a stress resilience factor under conditions that are characterized by a high level of transcriptional and replicational stress. This increased resilience ensures oncogenic proliferation. Therefore, targeting MYC's ability to limit genomic instability by uncoupling transcription elongation and DNA repair or disrupting its ability to multimerize presents a therapeutic window in MYC-dependent tumors.}, subject = {MYC}, language = {en} } @phdthesis{Sauerwein2023, author = {Sauerwein, Till}, title = {Implementation and application of bioinformatical software for the analysis of dual RNA sequencing data of host and pathogen during infection}, doi = {10.25972/OPUS-30307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303075}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Since the advent of high-throughput sequencing technologies in the mid-2010s, RNA se- quencing (RNA-seq) has been established as the method of choice for studying gene expression. In comparison to microarray-based methods, which have mainly been used to study gene expression before the rise of RNA-seq, RNA-seq is able to profile the entire transcriptome of an organism without the need to predefine genes of interest. Today, a wide variety of RNA-seq methods and protocols exist, including dual RNA sequenc- ing (dual RNA-seq) and multi RNA sequencing (multi RNA-seq). Dual RNA-seq and multi RNA-seq simultaneously investigate the transcriptomes of two or more species, re- spectively. Therefore, the total RNA of all interacting species is sequenced together and only separated in silico. Compared to conventional RNA-seq, which can only investi- gate one species at a time, dual RNA-seq and multi RNA-seq analyses can connect the transcriptome changes of the species being investigated and thus give a clearer picture of the interspecies interactions. Dual RNA-seq and multi RNA-seq have been applied to a variety of host-pathogen, mutualistic and commensal interaction systems. We applied dual RNA-seq to a host-pathogen system of human mast cells and Staphylo- coccus aureus (S. aureus). S. aureus, a commensal gram-positive bacterium, can become an opportunistic pathogen and infect skin lesions of atopic dermatitis (AD) patients. Among the first immune cells S. aureus encounters are mast cells, which have previously been shown to be able to kill the bacteria by discharging antimicrobial products and re- leasing extracellular traps made of protein and deoxyribonucleic acid (DNA). However, S. aureus is known to evade the host's immune response by internalizing within mast cells. Our dual RNA-seq analysis of different infection settings revealed that mast cells and S. aureus need physical contact to influence each other's gene expression. We could show that S. aureus cells internalizing within mast cells undergo profound transcriptome changes to adjust their metabolism to survive in the intracellular niche. On the host side, we found out that infected mast cells elicit a type-I interferon (IFN-I) response in an autocrine manner and in a paracrine manner to non-infected bystander-cells. Our study provides the first evidence that mast cells are capable to produce IFN-I upon infection with a bacterial pathogen.}, subject = {Biologie}, language = {en} } @article{ThieleRichterHilger2023, author = {Thiele, Jonas A. and Richter, Aylin and Hilger, Kirsten}, title = {Multimodal brain signal complexity predicts human intelligence}, series = {eNeuro}, volume = {10}, journal = {eNeuro}, number = {2}, doi = {10.1523/ENEURO.0345-22.2022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312949}, year = {2023}, abstract = {Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven's Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r ∼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, N = 57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Analysing the phase space of the standard model and its basic four forces from a qubit phase transition perspective: implications for large-scale structure generation and early cosmological events}, doi = {10.25972/OPUS-29858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298580}, pages = {42}, year = {2023}, abstract = {The phase space for the standard model of the basic four forces for n quanta includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. We replace the "big bang" by a condensation event (interacting qubits become decoherent) and inflation by a crystallization event - the crystal unit cell guarantees same symmetries everywhere. Interacting qubits solidify and form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, large-scale structure of voids and filaments, supercluster formation, galaxy formation, dominance of matter and life-friendliness. We prove qubit interactions to be 1,2,4 or 8 dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field. Hence, vacuum energy gets low only inside the qubit crystal. Condensed mathematics may advantageously model free / bound qubits in phase space.}, language = {en} } @phdthesis{Schardt2023, author = {Schardt, Simon}, title = {Agent-based modeling of cell differentiation in mouse ICM organoids}, doi = {10.25972/OPUS-30194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301940}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Mammalian embryonic development is subject to complex biological relationships that need to be understood. However, before the whole structure of development can be put together, the individual building blocks must first be understood in more detail. One of these building blocks is the second cell fate decision and describes the differentiation of cells of the inner cell mass of the embryo into epiblast and primitive endoderm cells. These cells then spatially segregate and form the subsequent bases for the embryo and yolk sac, respectively. In organoids of the inner cell mass, these two types of progenitor cells are also observed to form, and to some extent to spatially separate. This work has been devoted to these phenomena over the past three years. Plenty of studies already provide some insights into the basic mechanics of this cell differentiation, such that the first signs of epiblast and primitive endoderm differentiation, are the expression levels of transcription factors NANOG and GATA6. Here, cells with low expression of GATA6 and high expression of NANOG adopt the epiblast fate. If the expressions are reversed, a primitive endoderm cell is formed. Regarding the spatial segregation of the two cell types, it is not yet clear what mechanism leads to this. A common hypothesis suggests the differential adhesion of cell as the cause for the spatial rearrangement of cells. In this thesis however, the possibility of a global cell-cell communication is investigated. The approach chosen to study these phenomena follows the motto "mathematics is biology's next microscope". Mathematical modeling is used to transform the central gene regulatory network at the heart of this work into a system of equations that allows us to describe the temporal evolution of NANOG and GATA6 under the influence of an external signal. Special attention is paid to the derivation of new models using methods of statistical mechanics, as well as the comparison with existing models. After a detailed stability analysis the advantages of the derived model become clear by the fact that an exact relationship of the model parameters and the formation of heterogeneous mixtures of two cell types was found. Thus, the model can be easily controlled and the proportions of the resulting cell types can be estimated in advance. This mathematical model is also combined with a mechanism for global cell-cell communication, as well as a model for the growth of an organoid. It is shown that the global cell-cell communication is able to unify the formation of checkerboard patterns as well as engulfing patterns based on differently propagating signals. In addition, the influence of cell division and thus organoid growth on pattern formation is studied in detail. It is shown that this is able to contribute to the formation of clusters and, as a consequence, to breathe some randomness into otherwise perfectly sorted patterns.}, subject = {Mathematische Modellierung}, language = {en} } @phdthesis{FetivaMora2023, author = {Fetiva Mora, Maria Camila}, title = {Changes in chromatin accessibility by oncogenic YAP and its relevance for regulation of cell cycle gene expression and cell migration}, doi = {10.25972/OPUS-30291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Various types of cancer involve aberrant cell cycle regulation. Among the pathways responsible for tumor growth, the YAP oncogene, a key downstream effector of the Hippo pathway, is responsible for oncogenic processes including cell proliferation, and metastasis by controlling the expression of cell cycle genes. In turn, the MMB multiprotein complex (which is formed when B-MYB binds to the MuvB core) is a master regulator of mitotic gene expression, which has also been associated with cancer. Previously, our laboratory identified a novel crosstalk between the MMB-complex and YAP. By binding to enhancers of MMB target genes and promoting B-MYB binding to promoters, YAP and MMB co-regulate a set of mitotic and cytokinetic target genes which promote cell proliferation. This doctoral thesis addresses the mechanisms of YAP and MMB mediated transcription, and it characterizes the role of YAP regulated enhancers in transcription of cell cycle genes. The results reported in this thesis indicate that expression of constitutively active, oncogenic YAP5SA leads to widespread changes in chromatin accessibility in untransformed human MCF10A cells. ATAC-seq identified that newly accessible and active regions include YAP-bound enhancers, while the MMB-bound promoters were found to be already accessible and remain open during YAP induction. By means of CRISPR-interference (CRISPRi) and chromatin immuniprecipitation (ChIP), we identified a role of YAP-bound enhancers in recruitment of CDK7 to MMB-regulated promoters and in RNA Pol II driven transcriptional initiation and elongation of G2/M genes. Moreover, by interfering with the YAP-B-MYB protein interaction, we can show that binding of YAP to B-MYB is also critical for the initiation of transcription at MMB-regulated genes. Unexpectedly, overexpression of YAP5SA also leads to less accessible chromatin regions or chromatin closing. Motif analysis revealed that the newly closed regions contain binding motifs for the p53 family of transcription factors. Interestingly, chromatin closing by YAP is linked to the reduced expression and loss of chromatin-binding of the p53 family member Np63. Furthermore, I demonstrate that downregulation of Np63 following expression of YAP is a key step in driving cellular migration. Together, the findings of this thesis provide insights into the role of YAP in the chromatin changes that contribute to the oncogenic activities of YAP. The overexpression of YAP5SA not only leads to the opening of chromatin at YAP-bound enhancers which together with the MMB complex stimulate the expression of G2/M genes, but also promotes the closing of chromatin at ∆Np63 -bound regions in order to lead to cell migration.}, subject = {Chromatin}, language = {en} } @phdthesis{Fasemore2023, author = {Fasemore, Akinyemi Mandela}, title = {Genomic and internet based analysis of \(Coxiella\) \(burnetii\)}, doi = {10.25972/OPUS-29663}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296639}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Coxiella burnetii, a Gram negative obligate intracellular bacterium, is the causative agent of Q fever. It has a world wide distribution and has been documented to be capable of causing infections in several domestic animals, livestock species, and human beings. Outbreaks of Q fever are still being observed in livestock across animal farms in Europe, and primary transmission to humans still oc- curs especially in animal handlers. Public health authorities in some countries like Germany are required by law to report human acute cases denoting the significance of the challenge posed by C. burnetii to public health. In this thesis, I have developed a platform alongside methods to address the challenges of genomic analyses of C. burnetii for typing purposes. Identification of C. burnetii isolates is an important task in the laboratory as well as in the clinics and genotyping is a reliable method to identify and characterize known and novel isolates. Therefore, I designed and implemented several methods to facilitate the genotyping analyses of C. burnetii genomes in silico via a web platform. As genotyping is a data intensive process, I also included additional features such as visualization methods and databases for interpretation and storage of obtained results. I also developed a method to profile the resistome of C. burnetii isolates using a machine learning approach. Data about antibiotic resistance in C. burnetii are scarce majorly due to its lifestyle and the difficulty of cultivation in laboratory media. Alternative methods that rely on homology identification of resistance genes are also inefficient in C. burnetii, hence, I opted for a novel approach that has been shown to be promising in other bacteria species. The applied method relied on an artificial neural network as well as amino acid composition of position specific scoring matrix profile for feature extraction. The resulting model achieved an accuracy of ≈ 0.96 on test data and the overall performance was significantly higher in comparison to existing models. Finally, I analyzed two new C. burnetii isolates obtained from an outbreak in Germany, I compared the genome to the RSA 493 reference isolate and found extensive deletions across the genome landscape. This work has provided a new digital infrastructure to analyze and character- ize C. burnetii genomes that was not in existence before and it has also made a significant contribution to the existing information about antibiotic resistance genes in C. burnetii.}, language = {en} } @phdthesis{Rutschmann2023, author = {Rutschmann, Benjamin}, title = {Occurrence and population density of wild-living honey bees in Europe and the impact of different habitat types on their foraging and overwintering success}, doi = {10.25972/OPUS-28673}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The original habitat of native European honey bees (\(Apis\) \(mellifera\)) is forest, but currently there is a lack of data about the occurrence of wild honey bee populations in Europe. Prior to being kept by humans in hives, honey bees nested as wild species in hollow trees in temperate forests. However, in the 20th century, intensification of silviculture and agriculture with accompanying losses of nesting sites and depletion of food resources caused population declines in Europe. When the varroa mite (Varroa destructor), an invasive ectoparasite from Asia, was introduced in the late 1970s, wild honey bees were thought to be eradicated in Europe. Nevertheless, sporadic, mostly anecdotal, reports from ornithologists or forest ecologists indicated that honey bee colonies still occupy European forest areas. In my thesis I hypothesize that near-natural deciduous forests may provide sufficient large networks of nesting sites representing refugia for wild-living honey bees. Using two special search techniques, i.e. the tracking of flight routes of honey bee foragers (the "beelining" method) and the inspection of known cavity trees, I collected for the first time data on the occurrence and density of wild-living honey bees in forest areas in Germany (CHAPTER 3). I found wild-living honey bee colonies in the Hainich national park at low densities in two succeeding years. In another forest region, I checked known habitat trees containing black woodpecker cavities for occupation by wild-living honey bee colonies. It turned out that honey bees regularly use these cavities and occur in similar densities in both studied forest regions, independent of the applied detection method. Extrapolating these densities to all German forest areas, I estimate several thousand wild-living colonies in Germany that potentially interact in different ways with the forest environment. I conclude that honey bees regularly colonize forest areas in Germany and that networks of mapped woodpecker cavities offer unique possibilities to study the ecology of wild-living honey bees over several years. While their population status is ambiguous and the density of colonies low, the fact that honey bees can still be found in forests poses questions about food supply in forest environments. Consequently, I investigated the suitability of woodlands as a honey bee foraging habitat (CHAPTER 4). As their native habitat, forests are assumed to provide important pollen and nectar sources for honey bee colonies. However, resource supply might be spatially and temporally restricted and landscape-scale studies in European forest regions are lacking. Therefore, I set up twelve honey bee colonies in observation hives at locations with varying degree of forest cover. Capitalizing on the unique communication behaviour, the waggle dance, I examined the foraging distances and habitat preferences of honey bees over almost an entire foraging season. Moreover, by connecting this decoded dance information with colony weight recordings, I could draw conclusions about the contribution of the different habitat types to honey yield. Foraging distances generally increased with the amount of forest in the surrounding landscape. Yet, forest cover did not have an effect on colony weight. Compared to expectations based on the proportions of different habitats in the surroundings, colonies foraged more frequently in cropland and grasslands than in deciduous and coniferous forests, especially in late summer when pollen foraging in the forest is most difficult. In contrast, colonies used forests for nectar/honeydew foraging in early summer during times of colony weight gain emphasizing forests as a temporarily significant source of carbohydrates. Importantly, my study shows that the ecological and economic value of managed forest as habitat for honey bees and other wild pollinators can be significantly increased by the continuous provision of floral resources, especially for pollen foraging. The density of these wild-living honey bee colonies and their survival is driven by several factors that vary locally, making it crucial to compare results in different regions. Therefore, I investigated a wild-living honey bee population in Galicia in north-western Spain, where colonies were observed to reside in hollow electric poles (CHAPTER 5). The observed colony density only in these poles was almost twice as high as in German forest areas, suggesting generally more suitable resource conditions for the bees in Galicia. Based on morphometric analyses of their wing venation patterns, I assigned the colonies to the native evolutionary lineage (M-lineage) where the particularly threatened subspecies \(Apis\) \(mellifera\) \(iberiensis\) also belongs to. Averaged over two consecutive years, almost half of the colonies survived winter (23 out of 52). Interestingly, semi-natural areas both increased abundance and subsequent colony survival. Colonies surrounded by more semi-natural habitat (and therefore less intensive cropland) had an elevated overwintering probability, indicating that colonies need a certain amount of semi-natural habitat in the landscape to survive. Due to their ease of access these power poles in Galicia are, ideally suited to assess the population demography of wild-living Galician honey bee colonies through a long-term monitoring. In a nutshell, my thesis indicates that honey bees in Europe always existed in the wild. I performed the first survey of wild-living bee density yet done in Germany and Spain. My thesis identifies the landscape as a major factor that compromises winter survival and reports the first data on overwintering rates of wild-living honey bees in Europe. Besides, I established methods to efficiently detect wild-living honey bees in different habitat. While colonies can be found all over Europe, their survival and viability depend on unpolluted, flower rich habitats. The protection of near-natural habitat and of nesting sites is of paramount importance for the conservation of wild-living honey bees in Europe.  }, subject = {Biene}, language = {en} } @phdthesis{Franzke2023, author = {Franzke, Myriam}, title = {Keep on track : The use of visual cues for orientation in monarch butterflies}, doi = {10.25972/OPUS-28470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284709}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The monarch butterfly (Danaus plexippus) performs one of the most astonishing behaviors in the animal kingdom: every fall millions of these butterflies leave their breeding grounds in North Amerika and migrate more than 4.000 km southwards until they reach their overwintering habitat in Central Mexico. To maintain their migratory direction over this enormous distance, the butterflies use a time-compensated sun compass. Beside this, skylight polarization, the Earth's magnetic field and specific mountain ranges seem to guide the butterflies as well the south. In contrast to this fascinating orientation ability, the behavior of the butterflies in their non-migratory state received less attention. Although they do not travel long distances, they still need to orient themselves to find food, mating partners or get away from competitors. The aim of the present doctoral thesis was to investigate use of visual cues for orientation in migrating as well as non-migrating monarch butterflies. For this, field experiments investigating the migration of the butterflies in Texas (USA) were combined with experiments testing the orientation performance of non-migratory butterflies in Germany. In the first project, I recorded the heading directions of tethered butterflies during their annual fall migration. In an outdoor flight simulator, the butterflies maintained a southwards direction as long as they had a view of the sun's position. Relocating the position of the sun by 180° using a mirror, revealed that the sun is the animals' main orientation reference. Furthermore, I demonstrated that when the sun is blocked and a green light stimulus (simulated sun) is introduced, the animals interpreted this stimulus as the 'real' sun. However, this cue was not sufficient to set the migratory direction when simulated as the only visual cue in indoor experiments. When I presented the butterflies a linear polarization pattern additionally to the simulated sun, the animals headed in the correct southerly direction showing that multiple skylight cues are required to guide the butterflies during their migration. In the second project, I, furthermore, demonstrated that non-migrating butterflies are able to maintain a constant direction with respect to a simulated sun. Interestingly, they ignored the spectral component of the stimulus and relied on the intensity instead. When a panoramic skyline was presented as the only orientation reference, the butterflies maintained their direction only for short time windows probably trying to stabilize their flight based on optic-flow information. Next, I investigated whether the butterflies combine celestial with local cues by simulating a sun stimulus together with a panoramic skyline. Under this conditions, the animals' directedness was increased demonstrating that they combine multiple visual cues for spatial orientation. Following up on the observation that a sun stimulus resulted in a different behavior than the panoramic skyline, I investigated in my third project which orientation strategies the butterflies use by presenting different simulated cues to them. While a bright stripe on a dark background elicited a strong attraction of the butterflies steering in the direction of the stimulus, the inverted version of the stimulus was used for flight stabilization. In contrast to this, the butterflies maintained arbitrary directions with a high directedness with respect to a simulated sun. In an ambiguous scenery with two identical stimuli (two bright stripes, two dark stripes, or two sun stimuli) set 180° apart, a constant flight course was only achieved when two sun stimuli were displayed suggesting an involvement of the animals' internal compass. In contrast, the butterflies used two dark stripes for flight stabilization and were alternatingly attracted by two bright stripes. This shows that monarch butterflies use stimulus-dependent orientation strategies and gives the first evidence for different neuronal pathways controlling the output behavior.}, subject = {Monarchfalter}, language = {en} } @phdthesis{Reinhard2023, author = {Reinhard, Sebastian}, title = {Improving Super-Resolution Microscopy Data Reconstruction and Evaluation by Developing Advanced Processing Algorithms and Artifcial Neuronal Networks}, doi = {10.25972/OPUS-31695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-316959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The fusion of methods from several disciplines is a crucial component of scientific development. Artificial Neural Networks, based on the principle of biological neuronal networks, demonstrate how nature provides the best templates for technological advancement. These innovations can then be employed to solve the remaining mysteries of biology, including, in particular, processes that take place on microscopic scales and can only be studied with sophisticated techniques. For instance, direct Stochastic Optical Reconstruction Microscopy combines tools from chemistry, physics, and computer science to visualize biological processes at the molecular level. One of the key components is the computer-aided reconstruction of super-resolved images. Improving the corresponding algorithms increases the quality of the generated data, providing further insights into our biology. It is important, however, to ensure that the heavily processed images are still a reflection of reality and do not originate in random artefacts. Expansion microscopy is expanding the sample by embedding it in a swellable hydrogel. The method can be combined with other super-resolution techniques to gain additional resolution. We tested this approach on microtubules, a well-known filamentous reference structure, to evaluate the performance of different protocols and labelling techniques. We developed LineProfiler an objective tool for data collection. Instead of collecting perpendicular profiles in small areas, the software gathers line profiles from filamentous structures of the entire image. This improves data quantity, quality and prevents a biased choice of the evaluated regions. On the basis of the collected data, we deployed theoretical models of the expected intensity distribution across the filaments. This led to the conclusion that post-expansion labelling significantly reduces the labelling error and thus, improves the data quality. The software was further used to determine the expansion factor and arrangement of synaptonemal complex data. Automated Simple Elastix uses state-of-the-art image alignment to compare pre- and post-expansion images. It corrects linear distortions occurring under isotropic expansion, calculates a structural expansion factor and highlights structural mismatches in a distortion map. We used the software to evaluate expanded fungi and NK cells. We found that the expansion factor differs for the two structures and is lower than the overall expansion of the hydrogel. Assessing the fluorescence lifetime of emitters used for direct Stochastic Optical Reconstruction Microscopy can reveal additional information about the molecular environment or distinguish dyes emitting with a similar wavelength. The corresponding measurements require a confocal scanning of the sample in combination with the fluorescent switching of the underlying emitters. This leads to non-linear, interrupted Point Spread Functions. The software ReCSAI targets this problem by combining the classical algorithm of compressed sensing with modern methods of artificial intelligence. We evaluated several different approaches to combine these components and found, that unrolling compressed sensing into the network architecture yields the best performance in terms of reconstruction speed and accuracy. In addition to a deep insight into the functioning and learning of artificial intelligence in combination with classical algorithms, we were able to reconstruct the described non-linearities with significantly improved resolution, in comparison to other state-of-the-art architectures.}, subject = {Mikroskopie}, language = {en} } @article{SteinerZacharyBaueretal.2023, author = {Steiner, Thomas and Zachary, Marie and Bauer, Susanne and M{\"u}ller, Martin J. and Krischke, Markus and Radziej, Sandra and Klepsch, Maximilian and Huettel, Bruno and Eisenreich, Wolfgang and Rudel, Thomas and Beier, Dagmar}, title = {Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae}, series = {mBio}, volume = {14}, journal = {mBio}, doi = {10.1128/mbio.03093-22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313323}, year = {2023}, abstract = {Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C\(_1\)) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2023, author = {Dhillon, Maninder Singh and Dahms, Thorsten and Kuebert-Flock, Carina and Rummler, Thomas and Arnault, Joel and Steffan-Dewenter, Ingolf and Ullmann, Tobias}, title = {Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape}, series = {Frontiers in Remote Sensing}, volume = {3}, journal = {Frontiers in Remote Sensing}, issn = {2673-6187}, doi = {10.3389/frsen.2022.1010978}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301462}, year = {2023}, abstract = {The fast and accurate yield estimates with the increasing availability and variety of global satellite products and the rapid development of new algorithms remain a goal for precision agriculture and food security. However, the consistency and reliability of suitable methodologies that provide accurate crop yield outcomes still need to be explored. The study investigates the coupling of crop modeling and machine learning (ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and provides examples for the Free State of Bavaria (70,550 km2), Germany, in 2019. The main objectives are to find whether a coupling approach [Light Use Efficiency (LUE) + Random Forest (RF)] would result in better and more accurate yield predictions compared to results provided with other models not using the LUE. Four different RF models [RF1 (input: Normalized Difference Vegetation Index (NDVI)), RF2 (input: climate variables), RF3 (input: NDVI + climate variables), RF4 (input: LUE generated biomass + climate variables)], and one semi-empiric LUE model were designed with different input requirements to find the best predictors of crop monitoring. The results indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2) could not be the most accurate, reliable, and precise solution for crop monitoring; however, their combined use (in RF3) resulted in higher accuracies. Notably, the study suggested the coupling of the LUE model variables to the RF4 model can reduce the relative root mean square error (RRMSE) from -8\% (WW) and -1.6\% (OSR) and increase the R 2 by 14.3\% (for both WW and OSR), compared to results just relying on LUE. Moreover, the research compares models yield outputs by inputting three different spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the performance of models with higher mean R 2 [0.80 (WW), 0.69 (OSR)], and lower RRMSE (\%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-based crop biomass, solar radiation, and temperature are found to be the most influential variables in the yield prediction of both crops.}, language = {en} } @article{MaihoffFriessHoissetal.2023, author = {Maihoff, Fabienne and Friess, Nicolas and Hoiss, Bernhard and Schmid-Egger, Christian and Kerner, Janika and Neumayer, Johann and Hopfenm{\"u}ller, Sebastian and B{\"a}ssler, Claus and M{\"u}ller, J{\"o}rg and Classen, Alice}, title = {Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade}, series = {Diversity and Distributions}, volume = {29}, journal = {Diversity and Distributions}, number = {2}, doi = {10.1111/ddi.13658}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312126}, pages = {272-288}, year = {2023}, abstract = {Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small-bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real-world communities over time. Location German Alps and pre-alpine forests in south-east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well-protected elevational gradients (alpine grassland vs. pre-alpine forest), each sampled twice within the last decade. Results We detected clear abundance-based upward shifts in bee communities, particularly in cold-adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small-bodied species in low- and mid-elevations along the grassland gradient. Community responses in the pre-alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well-protected temperate mountain regions, small-bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade.}, language = {en} } @article{DeğirmenciRogeFerreiraVukosavljevicetal.2023, author = {Değirmenci, Laura and Rog{\´e} Ferreira, Fabio Luiz and Vukosavljevic, Adrian and Heindl, Cornelia and Keller, Alexander and Geiger, Dietmar and Scheiner, Ricarda}, title = {Sugar perception in honeybees}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.1089669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302284}, year = {2023}, abstract = {Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.}, language = {en} } @phdthesis{Lippert2023, author = {Lippert, Juliane}, title = {Die molekulargenetische Charakterisierung von Nebennierenrindenkarzinomen als Schritt in Richtung personalisierter Medizin}, doi = {10.25972/OPUS-24717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Nebennierenrindenkarzinome (NNR-Ca; engl. adrenocortical carcinoma (ACC)) z{\"a}hlen zu den sehr seltenen Tumorentit{\"a}ten. Die Prognose f{\"u}r die Patient*innen ist insgesamt eher schlecht, kann aber, im Einzelnen betrachtet, sehr heterogen sein. Eine zuverl{\"a}ssige Prognose anhand klinischer und histopathologischer Marker - wie dem Tumorstadium bei Diagnose, dem Resektionsstatus und dem Proliferationsindex Ki-67 -, die routinem{\"a}ßig erhoben werden, ist nicht f{\"u}r alle Erkrankten m{\"o}glich. Außerdem wird deren Behandlung dadurch erschwert, dass Therapeutika fehlen, von denen ein Großteil der Patient*innen profitiert. Umfassende Multi-Omics-Studien aus den letzten Jahren halfen nicht nur das Wissen {\"u}ber Pathomechanismen in NNR-Cas zu erweitern, es konnte auch gezeigt werden, dass sich Patient*innen anhand molekularer Marker in Subgruppen mit jeweils unterschiedlicher Prognose einteilen lassen. Mit molekulargenetischen Untersuchungen wurden außerdem potentielle neue Therapieziele gefunden. Diese Erkenntnisse finden bisher jedoch keine oder kaum Anwendung, da die Analysen den zeitlichen und finanziellen Rahmen, der f{\"u}r den routinem{\"a}ßigen Einsatz im Klinikalltag zu erf{\"u}llen w{\"a}re, deutlich {\"u}berschreiten. Ziel dieser Arbeit war es, eine Strategie zur verbesserten Patientenversorgung der NNR-CaPatient*innen zu etablieren. Daf{\"u}r sollte gekl{\"a}rt werden, ob ausgew{\"a}hlte molekulare prognostische Marker mit Methoden, die theoretisch einfach in den Klinikalltag zu implementieren w{\"a}ren, gefunden werden k{\"o}nnen. Außerdem sollte nach pr{\"a}diktiven Markern gesucht werden, die helfen, NNR-Ca-Patient*innen zielgerichtet zu therapieren. Statt exom- oder genomweite Analysen durchzuf{\"u}hren wurden gezielt krebs- beziehungsweise NNR-Ca-assoziierte Gene mittels NGS (Next-Generation Sequencing) oder SangerSequenzierung (zusammen 161 Gene) und Pyrosequenzierung (4 Gene) auf somatische Ver{\"a}nderungen hin untersucht. Die Analysen wurden an DNA (Desoxyribonukleins{\"a}ure) durchgef{\"u}hrt, die aus FFPE (mit Formalin fixiert und in Paraffin eingebettet)-Gewebe isoliert worden war, welches standardm{\"a}ßig nach Tumoroperationen in Pathologien f{\"u}r Untersuchungen zur Verf{\"u}gung steht. Durch Analyse der Sequenzierergebnisse von insgesamt 157 Patient*innen aus einem retrospektiven (107 Patient*innen) und einem prospektiven Studienteil (50 Patient*innen) konnten in NNR-Cas bereits beschriebene Ver{\"a}nderungen von Genen und Signalwegen sowie Methylierungsunterschiede gefunden werden. Anhand der Sequenzierdaten der retrospektiven Studie wurden molekulare prognostische Marker (Anzahl an proteinver{\"a}ndernden Varianten pro Tumorprobe, Ver{\"a}nderungen im P53/Rb- und/oder dem Wnt/ß-Catenin-Signalweg und dem Methylierungsstatus von CpG-Inseln von vier 2 Tumorsuppressorgenen (GSTP1, PAX5, PAX6 und PYCARD)) definiert und f{\"u}r jeden einzelnen Marker ein signifikanter Zusammenhang zur L{\"a}nge des progressionsfreien {\"U}berlebens (PFS) der Patient*innen gefunden. Durch die Kombination der molekularen Marker mit den klinischen und histopathologischen Markern war es zudem m{\"o}glich, einen COMBI-Score zu bilden, der, verglichen mit den klinischen und histopathologischen Markern, eine spezifischere und sensitivere Aussage dar{\"u}ber erlaubt, ob Patient*innen innerhalb von 2 Jahren ein Fortschreiten der Tumorerkrankung erfahren. Mit Hilfe der Sequenzierdaten wurden in beiden Kohorten außerdem Ver{\"a}nderungen gefunden, die als pr{\"a}diktive Marker zum Einsatz von zielgerichteten Therapien vewendet werden k{\"o}nnten. Als vielversprechendstes Therapieziel wurde - bei 46 Tumoren in der retrospektiven und 7 Tumoren in der prospektiven Studie - CDK4 identifiziert. CDK4/CDK6-Inhibitoren sind f{\"u}r die Behandlung von fortgeschrittenem und metastasiertem Brustkrebs von der Lebensmittel- {\"u}berwachungs- und Arzneimittelbeh{\"o}rde (FDA; engl. Food and Drug Administration) zugelassene Therapeutika und bei anderen soliden Tumoren Gegenstand von Studien. Im Rahmen der Arbeit konnten außerdem von 12 Patient*innen jeweils zwei Tumoren molekulargenetisch untersucht und die Ergebnisse verglichen werden. Die Analyse zeigte, dass der Methylierungsstatus - im Vergleich zu Ver{\"a}nderungen in der DNA-Sequenz - der stabilere prognostische Marker ist. Mit dieser Arbeit wurde gezeigt, dass molekulare prognostische und pr{\"a}diktive Marker f{\"u}r den Einsatz zielgerichteter Therapien mit Methoden identifiziert werden k{\"o}nnen, die sich im klinischen Alltag bei der Behandlung von NNR-Ca-Patient*innen implementieren lassen. Um einen allgemein anerkannten Leitfaden zu etablieren, fehlen allerdings noch die Ergebnisse weiterer - vor allem prospektiver - Studien zur Validierung der hier pr{\"a}sentierten Ergebnisse. Die gewonnenen Erkenntnisse sind jedoch als wichtiger Schritt in Richtung personalisierter Medizin bei Nebennierenrindenkarzinomen anzusehen.}, subject = {Nebennierentumor}, language = {de} } @phdthesis{DeğirmencineePoelloth2023, author = {Değirmenci [n{\´e}e P{\"o}lloth], Laura}, title = {Sugar perception and sugar receptor function in the honeybee (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-32187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321873}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In the eusocial insect honeybee (Apis mellifera), many sterile worker bees live together with a reproductive queen in a colony. All tasks of the colony are performed by the workers, undergoing age-dependent division of labor. Beginning as hive bees, they take on tasks inside the hive such as cleaning or the producing of larval food, later developing into foragers. With that, the perception of sweetness plays a crucial role for all honeybees whether they are sitting on the honey stores in the hive or foraging for food. Their ability to sense sweetness is undoubtedly necessary to develop and evaluate food sources. Many of the behavioral decisions in honeybees are based on sugar perception, either on an individual level for ingestion, or for social behavior such as the impulse to collect or process nectar. In this context, honeybees show a complex spectrum of abilities to perceive sweetness on many levels. They are able to perceive at least seven types of sugars and decide to collect them for the colony. Further, they seem to distinguish between these sugars or at least show clear preferences when collecting them. Additionally, the perception of sugar is not rigid in honeybees. For instance, their responsiveness towards sugar changes during the transition from in-hive bees (e.g. nurses) to foraging and is linked to the division of labor. Other direct or immediate factors changing responsiveness to sugars are stress, starvation or underlying factors, such as genotype. Interestingly, the complexity in their sugar perception is in stark contrast to the fact that honeybees seem to have only three predicted sugar receptors. In this work, we were able to characterize the three known sugar receptors (AmGr1, AmGr2 and AmGr3) of the honeybee fully and comprehensively in oocytes (Manuscript II, Chapter 3 and Manuscript III, Chapter 4). We could show that AmGr1 is a broad sugar receptor reacting to sucrose, glucose, maltose, melezitose and trehalose (which is the honeybees' main blood sugar), but not fructose. AmGr2 acts as its co-receptor altering AmGr1's specificity, AmGr3 is a specific fructose receptor and we proved the heterodimerization of all receptors. With my studies, I was able to reproduce and compare the ligand specificity of the sugar receptors in vivo by generating receptor mutants with CRISPR/Cas9. With this thesis, I was able to define AmGr1 and AmGr3 as the honeybees' basis receptors already capable to detect all sugars of its known taste spectrum. In the expression analysis of my doctoral thesis (Manuscript I, Chapter 2) I demonstrated that both basis receptors are expressed in the antennae and the brain of nurse bees and foragers. This thesis assumes that AmGr3 (like the Drosophila homologue) functions as a sensor for fructose, which might be the satiety signal, while AmGr1 can sense trehalose as the main blood sugar in the brain. Both receptors show a reduced expression in the brain of foragers when compared with nurse bees. These results may reflect the higher concentrated diet of nurse bees in the hive. The higher number of receptors in the brain may allow nurse bees to perceive hunger earlier and to consume the food their sitting on. Forager bees have to be more persistent to hunger, when they are foraging, and food is not so accessible. The findings of reduced expression of the fructose receptor AmGr3 in the antennae of nurse bees are congruent with my other result that nurse bees are also less responsive to fructose at the antennae when compared to foragers (Manuscript I, Chapter 2). This is possible, since nurse bees sit more likely on ripe honey which contains not only higher levels of sugars but also monosaccharides (such as fructose), while foragers have to evaluate less-concentrated nectar. My investigations of the expression of AmGr1 in the antennae of honeybees found no differences between nurse bees and foragers, although foragers are more responsive to the respective sugar sucrose (Manuscript I, Chapter 2). Considering my finding that AmGr2 is the co-receptor of AmGr1, it can be assumed that AmGr1 and the mediated sucrose taste might not be directly controlled by its expression, but indirectly by its co-receptor. My thesis therefore clearly shows that sugar perception is associated with division of labor in honeybees and appears to be directly or indirectly regulated via expression. The comparison with a characterization study using other bee breeds and thus an alternative protein sequence of AmGr1 shows that co-expression of different AmGr1 versions with AmGr2 alters the sugar response differently. Therefore, this thesis provides first important indications that alternative splicing could also represent an important regulatory mechanism for sugar perception in honeybees. Further, I found out that the bitter compound quinine lowers the reward quality in learning experiments for honeybees (Manuscript IV, Chapter 5). So far, no bitter receptor has been found in the genome of honeybees and this thesis strongly assumes that bitter substances such as quinine inhibit sugar receptors in honeybees. With this finding, my work includes other molecules as possible regulatory mechanism in the honeybee sugar perception as well. We showed that the inhibitory effect is lower for fructose compared to sucrose. Considering that sugar signals might be processed as differently attractive in honeybees, this thesis concludes that the sugar receptor inhibition via quinine in honeybees might depend on the receptor (or its co-receptor), is concentration-dependent and based on the salience or attractiveness and concentration of the sugar present. With my thesis, I was able to expand the knowledge on honeybee's sugar perception and formulate a complex, comprehensive overview. Thereby, I demonstrated the multidimensional mechanism that regulates the sugar receptors and thus the sugar perception of honeybees. With this work, I defined AmGr1 and AmGr3 as the basis of sugar perception and enlarged these components to the co-receptor AmGr2 and the possible splice variants of AmGr1. I further demonstrated how those sugar receptor components function, interact and that they are clearly involved in the division of labor in honeybees. In summary, my thesis describes the mechanisms that enable honeybees to perceive sugar in a complex way, even though they inhere a limited number of sugar receptors. My data strongly suggest that honeybees overall might not only differentiate sugars and their diet by their general sweetness (as expected with only one main sugar receptor). The found sugar receptor mechanisms and their interplay further suggest that honeybees might be able to discriminate directly between monosaccharides and disaccharides or sugar molecules and with that their diet (honey and nectar).}, subject = {Biene}, language = {en} } @article{HanRenMamtiminetal.2023, author = {Han, Chao and Ren, Pengxuan and Mamtimin, Medina and Kruk, Linus and Sarukhanyan, Edita and Li, Chenyu and Anders, Hans-Joachim and Dandekar, Thomas and Krueger, Irena and Elvers, Margitta and Goebel, Silvia and Adler, Kristin and M{\"u}nch, G{\"o}tz and Gudermann, Thomas and Braun, Attila and Mammadova-Bach, Elmina}, title = {Minimal collagen-binding epitope of glycoprotein VI in human and mouse platelets}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines11020423}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304148}, year = {2023}, abstract = {Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.}, language = {en} } @phdthesis{Vansynghel2023, author = {Vansynghel, Justine}, title = {Pollination and pest control along gradients of shade cover and forest distance in Peruvian cacao agroforestry landscapes}, doi = {10.25972/OPUS-28157}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281574}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Chapter I - Introduction Global trade of beans of the cacao tree (Theobroma cacao), of which chocolate is produced, contributes to the livelihoods of millions of smallholder farmers. The understorey tree is native to South America but is nowadays cultivated in many tropical regions. In Peru, a South American country with a particularly high cacao diversity, it is common to find the tree cultivated alongside non-crop trees that provide shade, in so-called agroforestry systems. Because of the small scale and low management intensity of such systems, agroforestry is one of the most wildlife-friendly land-use types, harbouring the potential for species conservation. Studying wildlife-friendly land-use is of special importance for species conservation in biodiversity-rich tropical regions such as Peru, where agricultural expansion and intensification are threatening biodiversity. Moreover, there is a growing body of evidence that shows co-occurrence of high biodiversity levels and high yield in wildlife-friendly cacao farming. Yet studies are restricted to non-native cacao countries, and since patterns might be different among continents, it is important to improve knowledge on wildlife-friendly agroforestry in native countries. Because studies of wildlife-friendly cultivation processes are still largely lacking for South America, we set out to study multiple aspects of cacao productivity in agroforests in Peru, part of cacao´s region of origin. The natural pollination process of cacao, which is critically understudied, was investigated by trapping flower visitors and studying pollen deposition from macrophotographs (Chapter II). Next, we excluded birds, bats, ants and flying insects and squirrels from cacao trees in a full-factorial field experiment and quantified these animals´ contribution to cacao fruit set, fruit loss and yield (Chapter III). Lastly, we aimed to assess whether fruit quantity and quality of native cacao increases through manually supplementing pollen (Chapter II and IV), and whether microclimatic conditions and the genetic background of the studied varieties limit fruit set (Chapter IV). Chapter II - Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores Given the importance of cacao pollination for the global chocolate production, it is remarkable that fruit set limitations are still understudied. Knowledge on flower visitation and the effect of landscape context and local management are lacking, especially in the crop's region of origin. Moreover, the role of pollen deposition in limiting fruit set as well as the benefits of hand pollination in native cacao are unknown. In this chapter, we aimed to close the current knowledge gaps on cacao pollination biology and sampled flower visitors in 20 Peruvian agroforests with native cacao, along gradients of shade cover and forest distance. We also assessed pollen quantities and compared fruit set between manually and naturally pollinated flowers. We found that herbivores were the most abundant flower visitors in both northern and southern Peru, but we could not conclude which insects are effective cacao pollinators. Fruit set was remarkably low (2\%) but improved to 7\% due to pollen supplementation. Other factors such as a lack of effective pollinators, genetic pollen incompatibility or resource unavailability could be causing fruit set limitations. We conclude that revealing those causes and the effective pollinators of cacao will be key to improve pollination services in cacao. Chapter III - Quantifying services and disservices provided by insects and vertebrates in cacao agroforestry landscapes Pollination and pest control, two ecosystem services that support cacao yield, are provided by insects and vertebrates. However, animals also generate disservices, and their combined contribution is still unclear. Therefore, we excluded flying insects, ants, birds and bats, and as a side effect also squirrels from cacao trees and we assessed fruit set, fruit loss and final yield. Local management and landscape context can influence animal occurrence in cacao agroforestry landscapes; therefore, shade cover and forest distance were included in the analyses. Flying insects benefitted cacao fruit set, with largest gains in agroforests with intermediate shade cover. Birds and bats were also associated with improved fruit set rates and with a 114\% increase in yield, potentially due to pest control services provided by these animals. The role of ants was complicated: these insects had a positive effect on yield, but only close to forest. We also evidenced disservices generated by ants and squirrels, causing 7\% and 10\% of harvest loss, respectively. Even though the benefits provided by animals outweighed the disservices, trade-offs between services and disservices still should be integrated in cacao agroforestry management. Chapter IV - Cross-pollination improves fruit set and yield quality of Peruvian native cacao Because yields of the cacao tree are restricted by pollination, hand pollination has been proposed to improve yield quantity and potentially, also quality. However, low self- and cross-compatibility of native cacao, and abiotic conditions could cancel out hand pollination benefits. Yet, the impact of genetic constraints and abiotic conditions on fruit set have not been assessed in native cacao so far. To increase our understanding of the factors that limit fruit set in native cacao, we compared manual self- and cross-pollination with five native genotypes selected for their sensorial quality and simultaneously tested for effects of soil water content, temperature, and relative air humidity. We also compared quality traits between manually and naturally pollinated fruits. Success rates of self-pollination were low (0.5\%), but increased three- to eightfold due to cross-pollination, depending on the genotype of the pollen donor. Fruit set was also affected by the interaction between relative air humidity and temperature, and we found heavier and more premium seeds in fruits resulting from manual than natural pollination. Together, these findings show that reproductive traits of native cacao are constrained by genetic compatibility and abiotic conditions. We argue that because of the high costs of hand pollination, natural cross-pollination with native pollen donors should be promoted so that quality improvements can result in optimal economic gains for smallholder farmers. Chapter V - Discussion In this thesis, we demonstrated that the presence of flying insects, ants and vertebrates, local and landscape management practices, and pollen supplementation interactively affected cacao yield, at different stages of the development from flower to fruit. First, we showed that fruit set improved by intermediate shade levels and flower visitation by flying insects. Because the effective cacao pollinators remain unknown, we recommend shade cover management to safeguard fruit set rates. The importance of integrating trade-offs in wildlife-friendly management was highlighted by lower harvest losses due to ants and squirrels than the yield benefits provided by birds and bats. The maintenance of forest in the landscape might further promote occurrence of beneficial animals, because in proximity to forest, ants were positively associated with cacao yields. Therefore, an integrated wildlife-friendly farming approach in which shade cover is managed and forest is maintained or restored to optimize ecosystem service provision, while minimizing fruit loss, might benefit yields of native cacao. Finally, manual cross-pollination with native genotypes could be recommended, due to improved yield quantity and quality. However, large costs associated with hand pollination might cancel out these benefits. Instead, we argue that in an integrated management, natural cross-pollination should be promoted by employing compatible genotypes in order to improve yield quantity and quality of native cacao.}, subject = {Kakao}, language = {en} } @phdthesis{KayaZeeb2023, author = {Kaya-Zeeb, Sinan David}, title = {Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis}, doi = {10.25972/OPUS-31408}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology.}, subject = {Octopamin}, language = {en} } @phdthesis{Geis2023, author = {Geis, Maria}, title = {Identifizierung von Zielmolek{\"u}len und Herstellung zweigeteilter trivalenter T-Zell-aktivierender Antik{\"o}rperderivate zur immuntherapeutischen Behandlung von Multiplen Myelom}, doi = {10.25972/OPUS-18690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186906}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {T-Zell-aktivierende Formate, wie BiTE (bispecific T-cell engagers) Antik{\"o}rper und CAR T Zellen haben in den vergangen Jahren die Therapiem{\"o}glichkeiten f{\"u}r Tumorpatienten erweitert. Diese Therapeutika verkn{\"u}pfen T-Zellen mit malignen Zellen {\"u}ber je ein spezifisches Oberfl{\"a}chenmolek{\"u}l und initiieren, {\"u}ber eine T-Zell-vermittelte Immunantwort, die Lyse der Tumorzelle. Tumorspezifische Antigene sind jedoch selten. H{\"a}ufig werden Proteine adressiert, die neben den Tumorzellen auch auf gesunden Zellen exprimiert werden. Die Folgen sind toxische Effekte abseits der Tumorzellen auf Antigen-positiven gesunden Zellen (on target/off tumor), welche nicht nur die Dosis des Therapeutikums und dessen Effektivit{\"a}t limitieren, sondern zu geringen bis letalen Begleiterscheinungen f{\"u}hren k{\"o}nnen. Der Bedarf an effektiven Therapieformen mit geringen Nebenwirkungen ist folglich immer noch sehr hoch. Diese L{\"u}cke soll durch ein neues Antik{\"o}rperformat, sogenannten Hemibodies, geschlossen werden. Hemibodies sind eine neue Klasse von T-Zell-aktivierenden Antik{\"o}rpern, die sich gegen eine Antigenkombination und nicht einzelne Antigene auf Tumorzellen richten. Sie bestehen aus zwei komplement{\"a}ren Molek{\"u}len mit je einer Antigen-bindenden Sequenz, die entweder mit der leichten (VL) oder der schweren (VH) Kette eines T-Zell-aktivierenden anti CD3 Antik{\"o}rpers fusioniert ist. Nur wenn beide Hemibody-Fragmente gleichzeitig in unmittelbarer N{\"a}he an ihr jeweiliges Antigenepitop auf der Tumorzelle binden, komplementieren die beiden Antik{\"o}rperkonstrukte {\"u}ber das geteilte anti-CD3 und bilden einen trivalenten T Zell aktivierenden Komplex aus. Diese funktionale Einheit rekrutiert T-Zellen zur Tumorzelle und induzierte die T-Zell-vermittelte Lyse der malignen Zelle. Im Rahmen der vorliegenden Arbeit wurden geeignete Antigenkombinationen identifiziert und die erste effektive und spezifische Hemibody-basierte Immuntherapie gegen das Multiple Myelom (MM), ohne Nebenwirkungen auf Antigen-einfach-positiven gesunden Zellen, entwickelt. Basierend auf einer umfangreichen Analyse von Kandidaten-Antigenen wurden Kombinationen aus bekannten MM Zielmolek{\"u}len, wie BCMA, CD38, CD138, CD229 und SLAMF7, und f{\"u}r das MM unbekannte Oberfl{\"a}chenmolek{\"u}len, wie CHRM5 und LAX1, untersucht. Gegen die vielversprechendsten Antigene wurden Hemibodies entwickelt und produziert. Im Zusammenhang mit Analysen zur Produzierbarkeit sowie biochemischen und funktionalen Charakterisierungen, konnte aus 75 initialen Hemibody-Kombinationen drei Kombinationen mit geeigneten Eigenschaften identifiziert werden. Die Bindung von zwei Hemibody-Partnern auf der Oberfl{\"a}che der MM Zelle f{\"u}hrte zur Ausbildung eines trivalenten T-Zell-rekrutierenden Komplexes. Dieser initiierte nachfolgend {\"u}ber eine T-Zell-vermittelte Immunantwort die spezifische Lyse der malignen Zellen, ohne die Viabilit{\"a}t von Antigen-einfach-positiven gesunden K{\"o}rper- oder Effektor-Zellen zu beeinflussen. Zus{\"a}tzlich f{\"u}hrte eine Hemibody-Therapie in vivo in einem NOD SCID MM-Mausmodel innerhalb von 7 Tagen zur kompletten Remission der MM Zellen. Diese Daten zeigten Hemibodies als ein neues, sehr vielversprechendes Antik{\"o}rperformat f{\"u}r eine effektive und tumorspezifische Immuntherapie mit potentiell geringen Nebenwirkungen.}, language = {de} } @phdthesis{Schwarz2023, author = {Schwarz, Jessica Denise}, title = {Genome-wide reporter screens identify transcriptional regulators of ribosome biogenesis}, doi = {10.25972/OPUS-27901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279010}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cellular growth and proliferation are among the most important processes for cells and organisms. One of the major determinants of these processes is the amount of proteins and consequently also the amount of ribosomes. Their synthesis involves several hundred proteins and four different ribosomal RNA species, is highly coordinated and very energy-demanding. However, the molecular mechanims of transcriptional regulation of the protein-coding genes involved, is only poorly understood in mammals. In this thesis, unbiased genome-wide knockout reporter screens were performed, aiming to identify previously unknown transcriptional regulators of ribosome biogenesis factors (RiBis), which are important for the assembly and maturation of ribosomes, and ribosomal proteins (RPs), which are ribosomal components themself. With that approach and follow-up (validation) experiments, ALDOA and RBM8A among others, could be identified as regulators of ribosome biogenesis. Depletion of the glycolytic enzyme ALDOA led to a downregulation of RiBi- and RPpromoter driven reporters on protein and transcript level, as well as to a downregulation of ribosome biogenesis gene transcripts and of mRNAs of other genes important for proliferation. Reducing the amount of the exon junction complex protein RBM8A, led to a more prominent downregulation of one of the fluorescent reporters, but this regulation was independent of the promoter driving the expression of the reporter. However, acute protein depletion experiments in combination with nascent RNA sequencing (4sU-Seq) revealed, that mainly cytosolic ribosomal proteins (CRPs) were downregulated upon acute RBM8A withdrawal. ChIP experiments showed RBM8A binding to promoters of RP genes, but also to other chromatin regions. Total POL II or elongating and initiating POL II levels were not altered upon acute RBM8A depletion. These data provide a starting point for further research on the mechanisms of transcriptional regulation of RP and RiBi genes in mammals.}, subject = {Ribosom}, language = {en} } @phdthesis{Schilcher2023, author = {Schilcher, Felix}, title = {Regulation of the nurse-forager transition in honeybees (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-28935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Honeybees are among the few animals that rely on eusociality to survive. While the task of queen and drones is only reproduction, all other tasks are accomplished by sterile female worker bees. Different tasks are mostly divided by worker bees of different ages (temporal polyethism). Young honeybees perform tasks inside the hive like cleaning and nursing. Older honeybees work at the periphery of the nest and fulfill tasks like guarding the hive entrance. The oldest honeybees eventually leave the hive to forage for resources until they die. However, uncontrollable circumstances might force the colony to adapt or perish. For example, the introduced Varroa destructor mite or the deformed wing virus might erase a lot of in-hive bees. On the other hand, environmental events might kill a lot of foragers, leaving the colony with no new food intake. Therefore, adaptability of task allocation must be a priority for a honeybee colony. In my dissertation, I employed a wide range of behavioral, molecular biological and analytical techniques to unravel the underlying molecular and physiological mechanisms of the honeybee division of labor, especially in conjunction with honeybee malnourishment. The genes AmOARα1, AmTAR1, Amfor and vitellogenin have long been implied to be important for the transition from in-hive tasks to foraging. I have studied in detail expression of all of these genes during the transition from nursing to foraging to understand how their expression patterns change during this important phase of life. My focus lay on gene expression in the honeybee brain and fat body. I found an increase in the AmOARα1 and the Amforα mRNA expression with the transition from in-hive tasks to foraging and a decrease in expression of the other genes in both tissues. Interestingly, I found the opposite pattern of the AmOARα1 and AmTAR1 mRNA expression in the honeybee fat body during orientation flights. Furthermore, I closely observed juvenile hormone titers and triglyceride levels during this crucial time. Juvenile hormone titers increased with the transition from in-hive tasks to foraging and triglyceride levels decreased. Furthermore, in-hive bees and foragers also differ on a behavioral and physiological level. For example, foragers are more responsive towards light and sucrose. I proposed that modulation via biogenic amines, especially via octopamine and tyramine, can increase or decrease the responsiveness of honeybees. For that purpose, in-hive bees and foragers were injected with both biogenic amines and the receptor response was quantified 1 using electroretinography. In addition, I studied the behavioral response of the bees to light using a phototaxis assay. Injecting octopamine increased the receptor response and tyramine decreased it. Also, both groups of honeybees showed an increased phototactic response when injected with octopamine and a decreased response when injected with tyramine, independent of locomotion. Additionally, nutrition has long been implied to be a driver for division of labor. Undernourished honeybees are known to speed up their transition to foragers, possibly to cope with the missing resources. Furthermore, larval undernourishment has also been implied to speed up the transition from in-hive bees to foragers, due to increasing levels of juvenile hormone titers in adult honeybees after larval starvation. Therefore, I reared honeybees in-vitro to compare the hatched adult bees of starved and overfed larvae to bees reared under the standard in-vitro rearing diet. However, first I had to investigate whether the in-vitro rearing method affects adult honeybees. I showed effects of in-vitro rearing on behavior, with in-vitro reared honeybees foraging earlier and for a shorter time than hive reared honeybees. Yet, nursing behavior was unaffected. Afterwards, I investigated the effects of different larval diets on adult honeybee workers. I found no effects of malnourishment on behavioral or physiological factors besides a difference in weight. Honeybee weight increased with increasing amounts of larval food, but the effect seemed to vanish after a week. These results show the complexity and adaptability of the honeybee division of labor. They show the importance of the biogenic amines octopamine and tyramine and of the corresponding receptors AmOARα1 and AmTAR1 in modulating the transition from inhive bees to foragers. Furthermore, they show that in-vitro rearing has no effects on nursing behavior, but that it speeds up the transition from nursing to foraging, showing strong similarities to effects of larval pollen undernourishment. However, larval malnourishment showed almost no effects on honeybee task allocation or physiology. It seems that larval malnourishment can be easily compensated during the early lifetime of adult honeybees.}, subject = {Biene}, language = {en} } @article{BrennerGeigerSchlegeletal.2023, author = {Brenner, Daniela and Geiger, Nina and Schlegel, Jan and Diesendorf, Viktoria and Kersting, Louise and Fink, Julian and Stelz, Linda and Schneider-Schaulies, Sibylle and Sauer, Markus and Bodem, Jochen and Seibel, J{\"u}rgen}, title = {Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms24087281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313581}, year = {2023}, abstract = {Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {Protein folding and crystallization applied to qubit interactions and fundamental physics yields a modified inflation model for cosmology}, doi = {10.25972/OPUS-34615}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346156}, pages = {42}, year = {2023}, abstract = {Protein folding achieves a clear solution structure in a huge parameter space (the so-called protein folding problem). Proteins fold in water, and get by this a highly ordered structure. Finally, inside a protein crystal for structure resolution, you have everywhere the same symmetries as there is everywhere the same unit cell. We apply this to qubit interactions to do fundamental physics: in a modified cosmology, we replace the big bang by a condensation event in an eternal all-encompassing ocean of free qubits. Interactions of qubits in the qubit ocean are quite rare but provide a nucleus or seed for a new universe (domain) as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth). The crystal unit cell guarantees same symmetries everywhere inside the crystal. The textbook inflation scenario to explain the same laws of nature in our domain is replaced by the unit cell of the crystal formed. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). In a modified inflation scenario, the interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. Then standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements. We explain by cosmological crystallization instead of inflation: early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove initiation of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below Planck quantum there is liquidity left). The E8 symmetry of heterotic string theory has six curled-up, small dimensions which help to keep the qubit crystal together and will never expand. Mathematics focusses on the Hurwitz proof applied to qubit interaction, a toy model of qubit interaction and repulsive forces of qubits. Vacuum energy gets appropriate low inside the crystal. We give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction/confinement and gravity are derived from the qubit-interaction field.}, language = {en} } @phdthesis{Kohl2023, author = {Kohl, Patrick Laurenz}, title = {The buzz beyond the beehive: population demography, parasite burden and limiting factors of wild-living honeybee colonies in Germany}, doi = {10.25972/OPUS-33032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330327}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The western honeybee (Apis mellifera) is widely known as the honey producer and pollinator managed by beekeepers but neglected as a wild bee species. Central European honeybee populations have been anthropogenically disturbed since about 1850 through introgression and moderate artificial selection but have never been truly domesticated due to a lack of mating control. While their decline in the wild was historically attributed to the scarcity of nesting cavities, a contemporary view considers the invasion of the parasitic mite Varroa destructor in the 1970s as the major driver. However, there are no longitudinal population data available that could substantiate either claim. Based on the insight that introduced European honeybees form viable wild populations in eastern North America and reports on the occurrence of wild-living colonies from various European countries, we systematically studied the ecology of wild-living honeybees in Germany. First, we investigated whether wild-living honeybees colonising German forests form a self-sustaining population. Second, we asked how the parasite burden of wild-living colonies relates to that of managed colonies. And third, we explored whether the winter mortality of wild-living colonies is associated with parasite burden, nest depredation, or the lack of resources on the landscape scale. Between 2017 and 2021, we monitored listed trees with black woodpecker cavities for honeybees in the managed forests of three study regions (Swabian Alb, counties Coburg and Lichtenfels, county Weilheim-Schongau). Continuity of occupation was determined using microsatellite genetic markers. Wild-living colonies predictably colonised forests in summer, when about 10\% of all cavities were occupied. The annual colony survival rate and colony lifespan (based on N=112 colonies) were 10.6\% and 0.6 years, with 90\% of colonies surviving summer (July-September), 16\% surviving winter (September-April), and 72\% surviving spring (April-July). The average maximum and minimum colony densities were 0.23 (July) and 0.02 (April) colonies per km^2. During the (re-)colonisation of forests in spring, swarms preferred cavities that had already been occupied by other honeybee colonies. We estimate the net reproductive rate of the population to be R0= 0.318, meaning that it is currently not self-sustaining but maintained by the annual immigration of swarms from managed hives. The wild-living colonies are feral in a behavioural sense. We compared the occurrence of 18 microparasites among feral colonies (N=64) and managed colonies (N=74) using qPCR. Samples were collected in four regions (the three regions mentioned above and the city of Munich) in July 2020; they consisted of 20 workers per colony captured at flight entrances. We distinguished five colony types representing differences in colony age and management histories. Besides strong regional variation, feral colonies consistently hosted fewer microparasite taxa (median: 5, range 1-8) than managed colonies (median: 6, range 4-9) and had different parasite communities. Microparasites that were notably less prevalent among feral colonies were Trypanosomatidae, Chronic bee paralysis virus, and Deformed wing viruses A and B. In the comparison of five colony types, parasite burden was lowest in newly founded feral colonies, intermediate in overwintered feral colonies and managed nucleus colonies, and highest in overwintered managed colonies and hived swarms. This suggests that the natural mode of colony reproduction by swarming, which creates pauses in brood production, and well-dispersed nests, which reduce horizontal transmission, explain the reduced parasite burden in feral compared to managed colonies. To explore the roles of three potential drivers of feral colony winter mortality, we combined colony observations gathered during the monitoring study with data on colony-level parasite burden, observations and experiments on nest depredation, and landscape analyses. There was no evidence for an effect of summertime parasite burden on subsequent winter mortality: colonies that died (N=57) did not have a higher parasite burden than colonies that survived (N=10). Camera traps (N=15) installed on cavity trees revealed that honeybee nests are visited by a range of vertebrate species throughout the winter at rates of up to 10 visits per week. Four woodpecker species, great tits, and pine martens acted as true nest depredators. The winter survival rate of colonies whose nest entrances were protected by screens of wire mesh (N=32) was 50\% higher than that of colonies with unmanipulated entrances (N=40). Analyses of land cover maps revealed that the landscapes surrounding surviving colonies (N=19) contained on average 6.4 percentage points more resource-rich cropland than landscapes surrounding dying colonies (N=94). We estimate that tens of thousands of swarms escape from apiaries each year to occupy black woodpecker cavities and other hollow spaces in Germany and that feral colonies make up about 5\% of the regional honeybee populations. They are unlikely to contribute disproportionately to the spread of bee diseases. Instead, by spatially complementing managed colonies, they contribute to the pollination of wild plants in forests. Honeybees occupying tree cavities likely have various effects on forest communities by acting as nest site competitors or prey, and by accumulating biomass in tree holes. Nest depredation (a consequence of a lack of well-protected nest sites) and food resource limitation seem to be more important than parasites in hampering feral colony survival. The outstanding question is how environmental and intrinsic factors interact in preventing population establishment. Nest boxes with movable frames could be used to better study the environmental drivers of feral colonies' mortality. Pairs of wild (self-sustaining) and managed populations known to exist outside Europe could provide answers to whether modern apiculture creates honeybee populations maladapted to life in the wild. In Europe, large continuous forests might represent evolutionary refuges for wild honeybees.}, subject = {Biene }, language = {en} } @phdthesis{BergmannBorges2023, author = {Bergmann Borges, Alyssa}, title = {The endo-lysosomal system of \(Trypanosoma\) \(brucei\): insights from a protist cell model}, doi = {10.25972/OPUS-32924}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Most of the studies in cell biology primarily focus on models from the opisthokont group of eukaryotes. However, opisthokonts do not encompass the full diversity of eukaryotes. Thus, it is necessary to broaden the research focus to other organisms to gain a comprehensive understanding of basic cellular processes shared across the tree of life. In this sense, Trypanosoma brucei, a unicellular eukaryote, emerges as a viable alternative. The collaborative efforts in genome sequencing and protein tagging over the past two decades have significantly expanded our knowledge on this organism and have provided valuable tools to facilitate a more detailed analysis of this parasite. Nevertheless, numerous questions still remain. The survival of T. brucei within the mammalian host is intricately linked to the endo-lysosomal system, which plays a critical role in surface glycoprotein recycling, antibody clearance, and plasma membrane homeostasis. However, the dynamics of the duplication of the endo-lysosomal system during T. brucei proliferation and its potential relationship with plasma membrane growth remain poorly understood. Thus, as the primary objective, this thesis explores the endo-lysosomal system of T. brucei in the context of the cell cycle, providing insights on cell surface growth, endosome duplication, and clathrin recruitment. In addition, the study revisits ferritin endocytosis to provide quantitative data on the involvement of TbRab proteins (TbRab5A, TbRab7, and TbRab11) and the different endosomal subpopulations (early, late, and recycling endosomes, respectively) in the transport of this fluid-phase marker. Notably, while these subpopulations function as distinct compartments, different TbRabs can be found within the same region or structure, suggesting a potential physical connection between the endosomal subpopulations. The potential physical connection of endosomes is further explored within the context of the cell cycle and, finally, the duplication and morphological plasticity of the lysosome are also investigated. Overall, these findings provide insights into the dynamics of plasma membrane growth and the coordinated duplication of the endo-lysosomal system during T. brucei proliferation. The early duplication of endosomes suggests their potential involvement in plasma membrane growth, while the late duplication of the lysosome indicates a reduced role in this process. The recruitment of clathrin and TbRab GTPases to the site of endosome formation supports the assumption that the newly formed endosomal system is active during cell division and, consequently, indicates its potential role in plasma membrane homeostasis. Furthermore, considering the vast diversity within the Trypanosoma genus, which includes ~500 described species, the macroevolution of the group was investigated using the combined information of the 18S rRNA gene sequence and structure. The sequence-structure analysis of T. brucei and other 42 trypanosome species was conducted in the context of the diversity of Trypanosomatida, the order in which trypanosomes are placed. An additional analysis focused on Trypanosoma highlighted key aspects of the group's macroevolution. To explore these aspects further, additional trypanosome species were included, and the changes in the Trypanosoma tree topology were analyzed. The sequence-structure phylogeny confirmed the independent evolutionary history of the human pathogens T. brucei and Trypanosoma cruzi, while also providing insights into the evolution of the Aquatic clade, paraphyly of groups, and species classification into subgenera.}, subject = {Endocytose}, language = {en} } @article{KotlyarKrebsSolimandoetal.2023, author = {Kotlyar, Mischa J. and Krebs, Markus and Solimando, Antonio Giovanni and Marquardt, Andr{\´e} and Burger, Maximilian and K{\"u}bler, Hubert and Bargou, Ralf and Kneitz, Susanne and Otto, Wolfgang and Breyer, Johannes and Vergho, Daniel C. and Kneitz, Burkhard and Kalogirou, Charis}, title = {Critical evaluation of a microRNA-based risk classifier predicting cancer-specific survival in renal cell carcinoma with tumor thrombus of the inferior vena cava}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {7}, issn = {2072-6694}, doi = {10.3390/cancers15071981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311040}, year = {2023}, abstract = {(1) Background: Clear cell renal cell carcinoma extending into the inferior vena cava (ccRCC\(^{IVC}\)) represents a clinical high-risk setting. However, there is substantial heterogeneity within this patient subgroup regarding survival outcomes. Previously, members of our group developed a microRNA(miR)-based risk classifier — containing miR-21-5p, miR-126-3p and miR-221-3p expression — which significantly predicted the cancer-specific survival (CSS) of ccRCC\(^{IVC}\) patients. (2) Methods: Examining a single-center cohort of tumor tissue from n = 56 patients with ccRCC\(^{IVC}\), we measured the expression levels of miR-21, miR-126, and miR-221 using qRT-PCR. The prognostic impact of clinicopathological parameters and miR expression were investigated via single-variable and multivariable Cox regression. Referring to the previously established risk classifier, we performed Kaplan-Meier analyses for single miR expression levels and the combined risk classifier. Cut-off values and weights within the risk classifier were taken from the previous study. (3) Results: miR-21 and miR-126 expression were significantly associated with lymphonodal status at the time of surgery, the development of metastasis during follow-up, and cancer-related death. In Kaplan-Meier analyses, miR-21 and miR-126 significantly impacted CSS in our cohort. Moreover, applying the miR-based risk classifier significantly stratified ccRCC\(^{IVC}\) according to CSS. (4) Conclusions: In our retrospective analysis, we successfully validated the miR-based risk classifier within an independent ccRCC\(^{IVC}\) cohort.}, language = {en} } @phdthesis{Muench2023, author = {M{\"u}nch, Luca}, title = {Die Rolle transposabler Elemente in der Genese des malignen Melanom im Fischmodell Xiphophorus}, doi = {10.25972/OPUS-28922}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289228}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Der Name der transposablen Elemente beruht auf ihrer F{\"a}higkeit, ihre genomische Position ver{\"a}ndern zu k{\"o}nnen. Durch Chromosomenaberrationen, Insertionen oder Deletionen k{\"o}nnen ihre genomischen Transpositionen genetische Instabilit{\"a}t verursachen. Inwieweit sie dar{\"u}ber hinaus regulatorischen Einfluss auf Zellfunktionen besitzen, ist Gegenstand aktueller Forschung ebenso wie die daraus resultierende Frage nach der Gesamtheit ihrer biologischen Signifikanz. Die Weiterf{\"u}hrung experimenteller Forschung ist unabdingbar, um weiterhin offenen Fragen nachzugehen. Das Xiphophorus-Melanom-Modell stellt hierbei eines der {\"a}ltesten Tiermodelle zur Erforschung des malignen Melanoms dar. Durch den klar definierten genetischen Hintergrund eignet es sich hervorragend zur Erforschung des b{\"o}sartigen schwarzen Hautkrebses, welcher nach wie vor die t{\"o}dlichste aller bekannten Hautkrebsformen darstellt. Die hier vorliegende Arbeit besch{\"a}ftigt sich mit der Rolle transposabler Elemente in der malignen Melanomgenese von Xiphophorus.}, subject = {Transposon}, language = {de} } @article{MehmoodAlsalehWantetal.2023, author = {Mehmood, Rashid and Alsaleh, Alanoud and Want, Muzamil Y. and Ahmad, Ijaz and Siraj, Sami and Ishtiaq, Muhammad and Alshehri, Faizah A. and Naseem, Muhammad and Yasuhara, Noriko}, title = {Integrative molecular analysis of DNA methylation dynamics unveils molecules with prognostic potential in breast cancer}, series = {BioMedInformatics}, volume = {3}, journal = {BioMedInformatics}, number = {2}, issn = {2673-7426}, doi = {10.3390/biomedinformatics3020029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321171}, pages = {434 -- 445}, year = {2023}, abstract = {DNA methylation acts as a major epigenetic modification in mammals, characterized by the transfer of a methyl group to a cytosine. DNA methylation plays a pivotal role in regulating normal development, and misregulation in cells leads to an abnormal phenotype as is seen in several cancers. Any mutations or expression anomalies of genes encoding regulators of DNA methylation may lead to abnormal expression of critical molecules. A comprehensive genomic study encompassing all the genes related to DNA methylation regulation in relation to breast cancer is lacking. We used genomic and transcriptomic datasets from the Cancer Genome Atlas (TGCA) Pan-Cancer Atlas, Genotype-Tissue Expression (GTEx) and microarray platforms and conducted in silico analysis of all the genes related to DNA methylation with respect to writing, reading and erasing this epigenetic mark. Analysis of mutations was conducted using cBioportal, while Xena and KMPlot were utilized for expression changes and patient survival, respectively. Our study identified multiple mutations in the genes encoding regulators of DNA methylation. The expression profiling of these showed significant differences between normal and disease tissues. Moreover, deregulated expression of some of the genes, namely DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38, KLF4, TET2 and TDG, was correlated with patient prognosis. The current study, to our best knowledge, is the first to provide a comprehensive molecular and genetic profile of DNA methylation machinery genes in breast cancer and identifies DNA methylation machinery as an important determinant of the disease progression. The findings of this study will advance our understanding of the etiology of the disease and may serve to identify alternative targets for novel therapeutic strategies in cancer.}, language = {en} } @phdthesis{Schmalz2023, author = {Schmalz, Fabian Dominik}, title = {Processing of behaviorally relevant stimuli at different levels in the bee brain}, doi = {10.25972/OPUS-28882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.}, subject = {Biene}, language = {en} } @article{AupperleLellbachHeidrichKehletal.2023, author = {Aupperle-Lellbach, Heike and Heidrich, Daniela and Kehl, Alexandra and Conrad, David and Brockmann, Maria and T{\"o}rner, Katrin and Beitzinger, Christoph and M{\"u}ller, Tobias}, title = {KITLG copy number germline variations in schnauzer breeds and their relevance in digital squamous cell carcinoma in black giant schnauzers}, series = {Veterinary Sciences}, volume = {10}, journal = {Veterinary Sciences}, number = {2}, issn = {2306-7381}, doi = {10.3390/vetsci10020147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303913}, year = {2023}, abstract = {Copy number variations (CNVs) of the KITLG gene seem to be involved in the oncogenesis of digital squamous cell carcinoma (dSCC). The aims of this study were (1) to investigate KITLG CNV in giant (GS), standard (SS), and miniature (MS) schnauzers and (2) to compare KITLG CNV between black GS with and without dSCC. Blood samples from black GS (22 with and 17 without dSCC), black SS (18 with and 4 without dSSC; 5 unknown), and 50 MS (unknown dSSC status and coat colour) were analysed by digital droplet PCR. The results are that (1) most dogs had a copy number (CN) value > 4 (range 2.5-7.6) with no significant differences between GS, SS, and MS, and (2) the CN value in black GS with dSCC was significantly higher than in those without dSCC (p = 0.02). CN values > 5.8 indicate a significantly increased risk for dSCC, while CN values < 4.7 suggest a reduced risk for dSCC (grey area: 4.7-5.8). Diagnostic testing for KITLG CNV may sensitise owners to the individual risk of their black GS for dSCC. Further studies should investigate the relevance of KITLG CNV in SS and the protective effects in MS, who rarely suffer from dSCC.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2023, author = {Dhillon, Maninder Singh and Dahms, Thorsten and K{\"u}bert-Flock, Carina and Liepa, Adomas and Rummler, Thomas and Arnault, Joel and Steffan-Dewenter, Ingolf and Ullmann, Tobias}, title = {Impact of STARFM on crop yield predictions: fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {6}, issn = {2072-4292}, doi = {10.3390/rs15061651}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311092}, year = {2023}, abstract = {Rapid and accurate yield estimates at both field and regional levels remain the goal of sustainable agriculture and food security. Hereby, the identification of consistent and reliable methodologies providing accurate yield predictions is one of the hot topics in agricultural research. This study investigated the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of Bavaria (70,550 km\(^2\)), Germany, from 2001 to 2019. A synthetic normalised difference vegetation index (NDVI) time series was generated and validated by fusing the high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012), the study obtained an R\(^2\) of more than 0.65 and a RMSE of less than 0.11, which proves that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM products. Moreover, the accuracies of the NDVI fusion data have been found to correlate with the total number of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83 (between R\(^2\) of yearly synthetic NDVIs and N) and -0.84 (between RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate elements (such as minimum temperature, maximum temperature, relative humidity, evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting in an average R\(^2\) of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. The yield prediction results prove the consistency and stability of the LUE model for yield estimation. Using the LUE model, accurate crop yield predictions were obtained for WW (R\(^2\) = 0.88) and OSR (R\(^2\) = 0.74). Lastly, the study observed a high positive correlation of R = 0.81 and R = 0.77 between the yearly R\(^2\) of synthetic accuracy and modelled yield accuracy for WW and OSR, respectively.}, language = {en} } @article{dePazAsisHolzschuhetal.2023, author = {de Paz, V{\´i}ctor and As{\´i}s, Josep D. and Holzschuh, Andrea and Ba{\~n}os-Pic{\´o}n, Laura}, title = {Effects of traditional orchard abandonment and landscape context on the beneficial arthropod community in a Mediterranean agroecosystem}, series = {Insects}, volume = {14}, journal = {Insects}, number = {3}, issn = {2075-4450}, doi = {10.3390/insects14030277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311190}, year = {2023}, abstract = {Agricultural abandonment is one of the main land-use changes in Europe, and its consequences on biodiversity are context- and taxa-dependent. While several studies have worked on this topic, few have focused on traditional orchards, especially in different landscapes and under a Mediterranean climate. In this context, we aimed to determine the effects of almond orchard abandonment on the communities of three groups of beneficial arthropods and the role of the landscape context in modulating these effects. Between February and September 2019, four samplings were carried out in twelve almond orchards (three abandoned and three traditional (active orchards under traditional agricultural management) located in simple landscapes as well as three abandoned and three traditional in complex landscapes). Abandoned and traditional almond orchards harbor different arthropod communities and diversity metrics that are strongly conditioned by seasonality. Abandoned orchards can favor pollinators and natural enemies, providing alternative resources in simple landscapes. However, the role that abandoned orchards play in simple landscapes disappears as the percentage of semi-natural habitats in the landscape increases. Our results show that landscape simplification, through the loss of semi-natural habitats, has negative consequences on arthropod biodiversity, even in traditional farming landscapes with small fields and high crop diversity.}, language = {en} } @article{WersebeckmannBiegerlLeyeretal.2023, author = {Wersebeckmann, Vera and Biegerl, Carolin and Leyer, Ilona and Mody, Karsten}, title = {Orthopteran diversity in steep slope vineyards: the role of vineyard type and vegetation management}, series = {Insects}, volume = {14}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects14010083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304891}, year = {2023}, abstract = {The abandonment of traditional agricultural practices and subsequent succession are major threats to many open-adapted species and species-rich ecosystems. Viticulture on steep slopes has recently suffered from strong declines due to insufficient profitability, thus increasing the area of fallow land considerably. Changing cultivation systems from vertically oriented to modern vineyard terraces offers an opportunity to maintain management economically viable and thus reduces further abandonment. Hillside parallel terraces favor mechanization, and their embankments offer large undisturbed areas that could provide valuable habitats. We investigated the effects of vineyard abandonment, different vineyard management types (vertically oriented vs. terraced), and local parameters on Orthoptera diversity in 45 study sites along the Upper Middle Rhine Valley in Germany. Our results show that woody structures and vineyard abandonment reduced Orthoptera diversity at the local and landscape scale due to decreased habitat quality, especially for open-adapted species. In contrast, open inter-rows of actively managed vineyard types supported heat-adapted Caelifera species. On terrace embankments, extensive management and taller vegetation benefited Ensifera species, while short and mulched vegetation in vertically oriented vineyards favored the dominance of one single Caelifera species. Our results highlight the significance of maintaining viticultural management on steep slopes for the preservation of both open-adapted Orthoptera species and the cultural landscape.}, language = {en} } @article{DongBoeppleThieletal.2023, author = {Dong, Meng and B{\"o}pple, Kathrin and Thiel, Julia and Winkler, Bernd and Liang, Chunguang and Schueler, Julia and Davies, Emma J. and Barry, Simon T. and Metsalu, Tauno and M{\"u}rdter, Thomas E. and Sauer, Georg and Ott, German and Schwab, Matthias and Aulitzky, Walter E.}, title = {Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions}, series = {Cells}, volume = {12}, journal = {Cells}, number = {5}, issn = {2073-4409}, doi = {10.3390/cells12050807}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311030}, year = {2023}, abstract = {Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.}, language = {en} } @article{CerezoEchevarriaKehlBeitzingeretal.2023, author = {Cerezo-Echevarria, Argi{\~n}e and Kehl, Alexandra and Beitzinger, Christoph and M{\"u}ller, Tobias and Klopfleisch, Robert and Aupperle-Lellbach, Heike}, title = {Evaluating the histologic grade of digital squamous cell carcinomas in dogs and copy number variation of KIT Ligand — a correlation study}, series = {Veterinary Sciences}, volume = {10}, journal = {Veterinary Sciences}, number = {2}, issn = {2306-7381}, doi = {10.3390/vetsci10020088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304824}, year = {2023}, abstract = {Dark-haired dogs are predisposed to the development of digital squamous cell carcinoma (DSCC). This may potentially suggest an underlying genetic predisposition not yet completely elucidated. Some authors have suggested a potential correlation between the number of copies KIT Ligand (KITLG) and the predisposition of dogs to DSCC, containing a higher number of copies in those affected by the neoplasm. In this study, the aim was to evaluate a potential correlation between the number of copies of the KITLG and the histological grade of malignancy in dogs with DSCC. For this, 72 paraffin-embedded DSCCs with paired whole blood samples of 70 different dogs were included and grouped according to their haircoat color as follow: Group 0/unknown haircoat color (n = 11); Group 1.a/black non-Schnauzers (n = 15); group 1.b/black Schnauzers (n = 33); group 1.c/black and tan dogs (n = 7); group 2/tan animals (n = 4). The DSCCs were histologically graded. Additionally, KITLG Copy Number Variation (CNV) was determined by ddPCR. A significant correlation was observed between KITLG copy number and the histological grade and score value. This finding may suggest a possible factor for the development of canine DSCC, thus potentially having an impact on personalized veterinary oncological strategies and breeding programs.}, language = {en} } @phdthesis{Reuter2023, author = {Reuter, Christian Steffen}, title = {Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin}, doi = {10.25972/OPUS-25114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251147}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods.}, subject = {Trypanosoma brucei}, language = {en} } @article{DhillonKuebertFlockDahmsetal.2023, author = {Dhillon, Maninder Singh and K{\"u}bert-Flock, Carina and Dahms, Thorsten and Rummler, Thomas and Arnault, Joel and Steffan-Dewenter, Ingolf and Ullmann, Tobias}, title = {Evaluation of MODIS, Landsat 8 and Sentinel-2 data for accurate crop yield predictions: a case study using STARFM NDVI in Bavaria, Germany}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071830}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311132}, year = {2023}, abstract = {The increasing availability and variety of global satellite products and the rapid development of new algorithms has provided great potential to generate a new level of data with different spatial, temporal, and spectral resolutions. However, the ability of these synthetic spatiotemporal datasets to accurately map and monitor our planet on a field or regional scale remains underexplored. This study aimed to support future research efforts in estimating crop yields by identifying the optimal spatial (10 m, 30 m, or 250 m) and temporal (8 or 16 days) resolutions on a regional scale. The current study explored and discussed the suitability of four different synthetic (Landsat (L)-MOD13Q1 (30 m, 8 and 16 days) and Sentinel-2 (S)-MOD13Q1 (10 m, 8 and 16 days)) and two real (MOD13Q1 (250 m, 8 and 16 days)) NDVI products combined separately to two widely used crop growth models (CGMs) (World Food Studies (WOFOST), and the semi-empiric Light Use Efficiency approach (LUE)) for winter wheat (WW) and oil seed rape (OSR) yield forecasts in Bavaria (70,550 km\(^2\)) for the year 2019. For WW and OSR, the synthetic products' high spatial and temporal resolution resulted in higher yield accuracies using LUE and WOFOST. The observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 played a significant role in accurately measuring the yield of WW and OSR. For example, L- and S-MOD13Q1 resulted in an R\(^2\) = 0.82 and 0.85, RMSE = 5.46 and 5.01 dt/ha for WW, R\(^2\) = 0.89 and 0.82, and RMSE = 2.23 and 2.11 dt/ha for OSR using the LUE model, respectively. Similarly, for the 8- and 16-day products, the simple LUE model (R\(^2\) = 0.77 and relative RMSE (RRMSE) = 8.17\%) required fewer input parameters to simulate crop yield and was highly accurate, reliable, and more precise than the complex WOFOST model (R\(^2\) = 0.66 and RRMSE = 11.35\%) with higher input parameters. Conclusively, both S-MOD13Q1 and L-MOD13Q1, in combination with LUE, were more prominent for predicting crop yields on a regional scale than the 16-day products; however, L-MOD13Q1 was advantageous for generating and exploring the long-term yield time series due to the availability of Landsat data since 1982, with a maximum resolution of 30 m. In addition, this study recommended the further use of its findings for implementing and validating the long-term crop yield time series in different regions of the world.}, language = {en} } @phdthesis{Gotthard2023, author = {Gotthard, Hannes}, title = {Targeting Colorectal Cancer Stem Cells with Hemibodies}, doi = {10.25972/OPUS-30309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The cancer stem cell hypothesis is a cancer development model which elicited great interest in the last decades stating that cancer heterogeneity arises from a stem cell through asymmetrical division. The Cancer Stem Cell subset is described as the only population to be tumorigenic and having the potential to renew. Conventional therapy often fails to eradicate CSC resulting in tumor relapse. Consequently, it is of great inter-est to eliminate this subset of cells to provide the best patient outcome. In the last years several approaches to target CSC were developed, one of them being immunotherapeu-tic targeting with antibodies. Since markers associated with CSC are also expressed on normal stem cells or healthy adjacent tissue in colorectal cancer, dual targeting strate-gies are preferred over targeting only a single antigen. Subsequently, the idea of dual targeting two CSC markers in parallel by a newly developed split T cell-engaging anti-body format termed as Hemibodies emerged. In a preliminary single cell RNA sequenc-ing analysis of colorectal cancer cells CD133, CD24, CD166 and CEA were identified as suitable targets for the combinatorial targeting strategy. Therefore, this study focused on trispecific and trivalent Hemibodies comprising a split binding moiety against CD3 and a binding moiety against either CD133, CD24, CD166 or CEA to overcome the occurrence of resistance and to efficiently eradicate all tumor cells including the CSC compartment. The study showed that the Hemibody combinations CD133xCD24, CD133xCD166 and CD133xCEA are able to eliminate double positive CHO cells with high efficacy while having a high specificity indicated by no killing of single antigen positive cells. A thera-peutic window ranging between one to two log levels could be achieved for all combina-tions mentioned above. The combinations CD133xCD24 and CD133xCD166 further-more proved its efficacy and specificity on established colorectal cancer cell lines. Be-sides the evaluation of specificity and efficacy the already introduced 1st generation of Hemibodies could be improved into a 2nd generation Hemibody format with increased half-life, stability and production yield. In future experiments the applicability of above-mentioned Hemibodies will be proven on patient-derived micro tumors to also include variables like tumor microenvironment and infiltration.}, subject = {Monoklonaler bispezifischer Antik{\"o}rper}, language = {en} } @phdthesis{Meiser2023, author = {Meiser, Elisabeth}, title = {Single-molecule dynamics at a bottleneck: a systematic study of the narrow escape problem in a disc}, doi = {10.25972/OPUS-31965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Diffusion facilitates numerous reactions within the biological context of a cell. It is remarkable how the cost-efficient random process of Brownian motion promotes fast reactions. From the narrow escape theory, it is possible to determine the mean first passage time of such processes based on their reaction space and diffusion coefficient. The narrow escape theory of Brownian particles is characterized by a confining domain with reflective boundaries and a small reaction site. In this thesis, the mean first passage time was systematically tested in a disc as a function of the escape opening size in vitro and in silico. For the in vitro experiments, a model system of patterned supported-lipid bilayers (SLB) was established. Such a model is prepared by a combined colloid metalization approach, where a gold scaffold on glass facilitates assembly of SLB patches of distinct sizes through vesicle fusion. The model setup was evaluated and found to match all necessary requirements to test the nar- row escape problem in vitro. In particular, the reflectivity of the boundaries, the unhindered, free diffusion of the tracer lipids, and the distinct area were assessed. Observed results of the mean first passage time agreed with the theory of the narrow escape problem. There was excellent agreement in both absolute values and across a range of small escape opening sizes. Additionally, I developed a straightforward method, a correction factor, to calculate the mean first passage time from incomplete experimental traces. By re-scaling the mean first passage time to the fraction of particles that escaped, I was able to overcome the lifetime limitations of fluorescent probes. Previously inaccessible measurements of the mean first passage time relying on fluorescent probes will be made possible through this approach. The in vitro experiments were complemented with various in silico experiments. The latter were based on random walk simulations in discs, mimicking the in vitro situation with its uncertainties. The lifetime of single particles was either set sufficiently long to allow all particles to escape, or was adjusted to meet the lifetime limitations observed in the in vitro experiments. A comparison of the mean first passage time from lifetime-unlimited particles to the corrected, lifetime-limited particles did support the use of the correction factor. In agreement with the narrow escape theory, it was experimentally found that the mean first passage time is independent of the start point of the particle within the domain. This is when the particle adheres to a minimum distance to the escape site. In general, the presented random walk simulations do accurately represent the in vitro experiments in this study. The required hardware for the establishment of an astigmatism-based 3D system was installed in the existing microscope. The first attempts to analyze the obtained 3D imaging data gave insight into the potential of the method to investigate molecule dynamics in living trypanosome cells. The full functionality will be realized with the ongoing improvement of image analysis outside of this thesis.}, subject = {Freies Molek{\"u}l}, language = {en} } @article{MaloukhNazzalKumarappanetal.2023, author = {Maloukh, Lina and Nazzal, Yousef and Kumarappan, Alagappan and Howari, Fares and Ambika, Lakshmi Kesari and Yahmadi, Rihab and Sharma, Manish and Iqbal, Jibran and Al-Taani, Ahmed A. and Salem, Imen Ben and Xavier, Cijo M. and Naseem, Muhamad}, title = {Metagenomic analysis of the outdoor dust microbiomes: a case study from Abu Dhabi, UAE}, series = {Atmosphere}, volume = {14}, journal = {Atmosphere}, number = {2}, issn = {2073-4433}, doi = {10.3390/atmos14020327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304391}, year = {2023}, abstract = {Outdoor dust covers a shattered range of microbial agents from land over transportation, human microbial flora, which includes pathogen and commensals, and airborne from the environment. Dust aerosols are rich in bacterial communities that have a major impact on human health and living environments. In this study, outdoor samples from roadside barricades, safety walls, and fences (18 samples) were collected from Abu Dhabi, UAE and bacterial diversity was assessed through a 16S rRNA amplicon next generation sequencing approach. Clean data from HiSeq produced 1,099,892 total reads pairs for 18 samples. For all samples, taxonomic classifications were assigned to the OTUs (operational taxonomic units) representative sequence using the Ribosomal Database Project database. Analysis such as alpha diversity, beta diversity, differential species analysis, and species relative abundance were performed in the clustering of samples and a functional profile heat map was obtained from the OTUs by using bioinformatics tools. A total of 2814 OTUs were identified from those samples with a coverage of more than 99\%. In the phylum, all 18 samples had most of the bacterial groups such as Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Twelve samples had Propionibacteria acnes and were mainly found in RD16 and RD3. Major bacteria species such as Propionibacteria acnes, Bacillus persicus, and Staphylococcus captis were found in all samples. Most of the samples had Streptococcus mitis, Staphylococcus capitis. and Nafulsella turpanensis and Enhydrobacter aerosaccus was part of the normal microbes of the skin. Salinimicrobium sp., Bacillus alkalisediminis, and Bacillus persicus are halophilic bacteria found in sediments. The heat map clustered the samples and species in vertical and horizontal classification, which represents the relationship between the samples and bacterial diversity. The heat map for the functional profile had high properties of amino acids, carbohydrate, and cofactor and vitamin metabolisms of all bacterial species from all samples. Taken together, our analyses are very relevant from the perspective of out-door air quality, airborne diseases, and epidemics, with broader implications for health safety and monitoring.}, language = {en} } @article{MoustafaFouadIbrahimetal.2023, author = {Moustafa, Moataz A. M. and Fouad, Eman A. and Ibrahim, Emad and Erdei, Anna Laura and K{\´a}rp{\´a}ti, Zsolt and F{\´o}nagy, Adrien}, title = {The comparative toxicity, biochemical and physiological impacts of chlorantraniliprole and indoxacarb on Mamestra brassicae (Lepidoptera: Noctuidae)}, series = {Toxics}, volume = {11}, journal = {Toxics}, number = {3}, issn = {2305-6304}, doi = {10.3390/toxics11030212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303931}, year = {2023}, abstract = {Background: The cabbage moth, Mamestra brassicae, is a polyphagous pest that attacks several crops. Here, the sublethal and lethal effects of chlorantraniliprole and indoxacarb were investigated on the developmental stages, detoxification enzymes, reproductive activity, calling behavior, peripheral physiology, and pheromone titer of M. brasssicae. Methods: To assess pesticide effects, the second instar larvae were maintained for 24 h on a semi-artificial diet containing insecticides at their LC\(_{10}\), LC\(_{30}\), and LC\(_{50}\) concentrations. Results: M. brassicae was more susceptible to chlorantraniliprole (LC\(_{50}\) = 0.35 mg/L) than indoxacarb (LC\(_{50}\) = 1.71 mg/L). A significantly increased developmental time was observed with both insecticides at all tested concentrations but decreases in pupation rate, pupal weight, and emergence were limited to the LC50 concentration. Reductions in both the total number of eggs laid per female and the egg viability were observed with both insecticides at their LC\(_{30}\) and LC\(_{50}\) concentrations. Both female calling activity and the sex pheromone (Z11-hexadecenyl acetate and hexadecenyl acetate) titer were significantly reduced by chlorantraniliprole in LC\(_{50}\) concentration. Antennal responses of female antennae to benzaldehyde and 3-octanone were significantly weaker than controls after exposure to the indoxocarb LC\(_{50}\) concentration. Significant reductions in the enzymatic activity of glutathione S-transferases, mixed-function oxidases, and carboxylesterases were observed in response to both insecticides.}, language = {en} } @article{ShirakashiSisarioTabanetal.2023, author = {Shirakashi, Ryo and Sisario, Dmitri and Taban, Danush and Korsa, Tessa and Wanner, Sophia B. and Neubauer, Julia and Djuzenova, Cholpon S. and Zimmermann, Heiko and Sukhorukov, Vladimir L.}, title = {Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes}, series = {Biomechanics and Modeling in Mechanobiology}, volume = {22}, journal = {Biomechanics and Modeling in Mechanobiology}, number = {2}, doi = {10.1007/s10237-022-01654-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325107}, pages = {417-432}, year = {2023}, abstract = {Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.}, language = {en} } @article{EnglmeierMitesserBenbowetal.2023, author = {Englmeier, Jana and Mitesser, Oliver and Benbow, M. Eric and Hothorn, Torsten and von Hoermann, Christian and Benjamin, Caryl and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Redlich, Sarah and Riebl, Rebekka and Rojas Botero, Sandra and Rummler, Thomas and Steffan-Dewenter, Ingolf and Stengel, Elisa and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and Zhang, Jie and M{\"u}ller, J{\"o}rg}, title = {Diverse effects of climate, land use, and insects on dung and carrion decomposition}, series = {Ecosystems}, volume = {26}, journal = {Ecosystems}, number = {2}, issn = {1432-9840}, doi = {10.1007/s10021-022-00764-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325064}, pages = {397-411}, year = {2023}, abstract = {Land-use intensification and climate change threaten ecosystem functions. A fundamental, yet often overlooked, function is decomposition of necromass. The direct and indirect anthropogenic effects on decomposition, however, are poorly understood. We measured decomposition of two contrasting types of necromass, rat carrion and bison dung, on 179 study sites in Central Europe across an elevational climate gradient of 168-1122 m a.s.l. and within both local and regional land uses. Local land-use types included forest, grassland, arable fields, and settlements and were embedded in three regional land-use types (near-natural, agricultural, and urban). The effects of insects on decomposition were quantified by experimental exclusion, while controlling for removal by vertebrates. We used generalized additive mixed models to evaluate dung weight loss and carrion decay rate along elevation and across regional and local land-use types. We observed a unimodal relationship of dung decomposition with elevation, where greatest weight loss occurred between 600 and 700 m, but no effects of local temperature, land use, or insects. In contrast to dung, carrion decomposition was continuously faster with both increasing elevation and local temperature. Carrion reached the final decomposition stage six days earlier when insect access was allowed, and this did not depend on land-use effect. Our experiment identified different major drivers of decomposition on each necromass form. The results show that dung and carrion decomposition are rather robust to local and regional land use, but future climate change and decline of insects could alter decomposition processes and the self-regulation of ecosystems.}, language = {en} } @article{RoesslerGrobFleischmann2023, author = {R{\"o}ssler, Wolfgang and Grob, Robin and Fleischmann, Pauline N.}, title = {The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain}, series = {Journal of Comparative Physiology A}, volume = {209}, journal = {Journal of Comparative Physiology A}, number = {4}, doi = {10.1007/s00359-022-01600-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325096}, pages = {605-623}, year = {2023}, abstract = {Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how na{\"i}ve ants acquire the necessary spatial information and adjust their visual compass systems. Na{\"i}ve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth's magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.}, language = {en} } @article{ConradKehlMuelleretal.2023, author = {Conrad, David and Kehl, Alexandra and M{\"u}ller, Tobias and Klopfleisch, Robert and Aupperle-Lellbach, Heike}, title = {Immunohistochemical and molecular genetic analysis of canine digital mast cell tumours}, series = {Animals}, volume = {13}, journal = {Animals}, number = {10}, issn = {2076-2615}, doi = {10.3390/ani13101694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319199}, year = {2023}, abstract = {Grading, immunohistochemistry and c-kit mutation status are criteria for assessing the prognosis and therapeutic options of canine cutaneous mast cell tumours (MCTs). As a subset, canine digital MCTs have rarely been explored in this context. Therefore, in this retrospective study, 68 paraffin-embedded canine digital MCTs were analysed, and histological grading was assessed according to Patnaik and Kiupel. The immunohistochemical markers KIT and Ki67 were used, as well as polymerase chain reaction (PCR) for mutational screening in c-kit exons 8, 9, 11 and 14. Patnaik grading resulted in 22.1\% grade I, 67.6\% grade II and 10.3\% grade III tumours. Some 86.8\% of the digital MCTs were Kiupel low-grade. Aberrant KIT staining patterns II and III were found in 58.8\%, and a count of more than 23 Ki67-positive cells in 52.3\% of the cases. Both parameters were significantly associated with an internal tandem duplication (ITD) in c-kit exon 11 (12.7\%). French Bulldogs, which tend to form well-differentiated cutaneous MCTs, had a higher proportion of digital high-grade MCTs and ITD in c-kit exon 11 compared with mongrels. Due to its retrospective nature, this study did not allow for an analysis of survival data. Nevertheless, it may contribute to the targeted characterisation of digital MCTs.}, language = {en} } @article{SalihogluSrivastavaLiangetal.2023, author = {Salihoglu, Rana and Srivastava, Mugdha and Liang, Chunguang and Schilling, Klaus and Szalay, Aladar and Bencurova, Elena and Dandekar, Thomas}, title = {PRO-Simat: Protein network simulation and design tool}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.04.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350034}, pages = {2767-2779}, year = {2023}, abstract = {PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.}, language = {en} } @article{SchuhmannScheiner2023, author = {Schuhmann, Antonia and Scheiner, Ricarda}, title = {A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees}, series = {Ecotoxicology and Environmental Safety}, volume = {256}, journal = {Ecotoxicology and Environmental Safety}, doi = {10.1016/j.ecoenv.2023.114850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350047}, year = {2023}, abstract = {The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive. Highlights • Mix of SBI fungicides and neonicotinoids can lead to synergistic effects for bees. • Combination of non-SBI fungicide and neonicotinoid in field-realistic doses tested. • Synergistic effect on mortality of honeybees. • No effects on sucrose responsiveness and learning performance of honeybees. • Synergistic effects by other pesticide mixtures or on wild bees cannot be excluded.}, language = {en} } @article{AmatobiOzbekUnalSchaebleretal.2023, author = {Amatobi, Kelechi M. and Ozbek-Unal, Ayten Gizem and Sch{\"a}bler, Stefan and Deppisch, Peter and Helfrich-F{\"o}rster, Charlotte and Mueller, Martin J. and Wegener, Christian and Fekete, Agnes}, title = {The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition}, series = {Journal of Lipid Research}, volume = {64}, journal = {Journal of Lipid Research}, number = {10}, doi = {10.1016/j.jlr.2023.100417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349961}, pages = {100417}, year = {2023}, abstract = {Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.}, language = {en} } @article{CaliskanCaliskanRasbachetal.2023, author = {Caliskan, Aylin and Caliskan, Deniz and Rasbach, Lauritz and Yu, Weimeng and Dandekar, Thomas and Breitenbach, Tim}, title = {Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.06.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349989}, pages = {3293-3314}, year = {2023}, abstract = {Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline.}, language = {en} } @article{CaliskanDangwalDandekar2023, author = {Caliskan, Aylin and Dangwal, Seema and Dandekar, Thomas}, title = {Metadata integrity in bioinformatics: bridging the gap between data and knowledge}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.10.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349990}, pages = {4895-4913}, year = {2023}, abstract = {In the fast-evolving landscape of biomedical research, the emergence of big data has presented researchers with extraordinary opportunities to explore biological complexities. In biomedical research, big data imply also a big responsibility. This is not only due to genomics data being sensitive information but also due to genomics data being shared and re-analysed among the scientific community. This saves valuable resources and can even help to find new insights in silico. To fully use these opportunities, detailed and correct metadata are imperative. This includes not only the availability of metadata but also their correctness. Metadata integrity serves as a fundamental determinant of research credibility, supporting the reliability and reproducibility of data-driven findings. Ensuring metadata availability, curation, and accuracy are therefore essential for bioinformatic research. Not only must metadata be readily available, but they must also be meticulously curated and ideally error-free. Motivated by an accidental discovery of a critical metadata error in patient data published in two high-impact journals, we aim to raise awareness for the need of correct, complete, and curated metadata. We describe how the metadata error was found, addressed, and present examples for metadata-related challenges in omics research, along with supporting measures, including tools for checking metadata and software to facilitate various steps from data analysis to published research. Highlights • Data awareness and data integrity underpins the trustworthiness of results and subsequent further analysis. • Big data and bioinformatics enable efficient resource use by repurposing publicly available RNA-Sequencing data. • Manual checks of data quality and integrity are insufficient due to the overwhelming volume and rapidly growing data. • Automation and artificial intelligence provide cost-effective and efficient solutions for data integrity and quality checks. • FAIR data management, various software solutions and analysis tools assist metadata maintenance.}, language = {en} } @article{DaeullaryImdahlDietrichetal.2023, author = {D{\"a}ullary, Thomas and Imdahl, Fabian and Dietrich, Oliver and Hepp, Laura and Krammer, Tobias and Fey, Christina and Neuhaus, Winfried and Metzger, Marco and Vogel, J{\"o}rg and Westermann, Alexander J. and Saliba, Antoine-Emmanuel and Zdzieblo, Daniela}, title = {A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection}, series = {Gut Microbes}, volume = {15}, journal = {Gut Microbes}, number = {1}, doi = {10.1080/19490976.2023.2186109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350451}, year = {2023}, abstract = {Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.}, language = {en} } @article{EngstlerBeneke2023, author = {Engstler, Markus and Beneke, Tom}, title = {Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.85605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350002}, year = {2023}, abstract = {CRISPR/Cas9 gene editing has revolutionised loss-of-function experiments in Leishmania, the causative agent of leishmaniasis. As Leishmania lack a functional non-homologous DNA end joining pathway however, obtaining null mutants typically requires additional donor DNA, selection of drug resistance-associated edits or time-consuming isolation of clones. Genome-wide loss-of-function screens across different conditions and across multiple Leishmania species are therefore unfeasible at present. Here, we report a CRISPR/Cas9 cytosine base editor (CBE) toolbox that overcomes these limitations. We employed CBEs in Leishmania to introduce STOP codons by converting cytosine into thymine and created http://www.leishbaseedit.net/ for CBE primer design in kinetoplastids. Through reporter assays and by targeting single- and multi-copy genes in L. mexicana, L. major, L. donovani, and L. infantum, we demonstrate how this tool can efficiently generate functional null mutants by expressing just one single-guide RNA, reaching up to 100\% editing rate in non-clonal populations. We then generated a Leishmania-optimised CBE and successfully targeted an essential gene in a plasmid library delivered loss-of-function screen in L. mexicana. Since our method does not require DNA double-strand breaks, homologous recombination, donor DNA, or isolation of clones, we believe that this enables for the first time functional genetic screens in Leishmania via delivery of plasmid libraries.}, language = {en} } @article{OtienoKarpatiPetersetal.2023, author = {Otieno, Mark and Karpati, Zsolt and Peters, Marcell K. and Duque, Laura and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta)}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0283480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350020}, year = {2023}, abstract = {Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs' profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions.}, language = {en} } @article{BencurovaAkashDobsonetal.2023, author = {Bencurova, Elena and Akash, Aman and Dobson, Renwick C.J. and Dandekar, Thomas}, title = {DNA storage-from natural biology to synthetic biology}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.01.045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349971}, pages = {1227-1235}, year = {2023}, abstract = {Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macram{\´e} , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).}, language = {en} } @article{ThomasFiebigKuhnetal.2023, author = {Thomas, Sarah and Fiebig, Juliane E. and Kuhn, Eva-Maria and Mayer, Dominik S. and Filbeck, Sebastian and Schmitz, Werner and Krischke, Markus and Gropp, Roswitha and Mueller, Thomas D.}, title = {Design of glycoengineered IL-4 antagonists employing chemical and biosynthetic glycosylation}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {28}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350278}, pages = {24841-24852}, year = {2023}, abstract = {Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.}, language = {en} } @article{LuDreyerDickinsonetal.2023, author = {Lu, Jinping and Dreyer, Ingo and Dickinson, Miles Sasha and Panzer, Sabine and Jaślan, Dawid and Navarro-Retamal, Carlos and Geiger, Dietmar and Terpitz, Ulrich and Becker, Dirk and Stroud, Robert M. and Marten, Irene and Hedrich, Rainer}, title = {Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.86384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350264}, year = {2023}, abstract = {To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.}, language = {en} } @phdthesis{Kuehl2022, author = {K{\"u}hl, Julia}, title = {FAAP100, der FA/BRCA-Signalweg f{\"u}r genomische Stabilit{\"a}t und das DNA-Reparatur-Netzwerk}, doi = {10.25972/OPUS-17166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fanconi-An{\"a}mie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, h{\"a}matologischen Funktionsst{\"o}rungen, einem erh{\"o}hten Risiko f{\"u}r Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung z{\"a}hlt zu den genomischen Instabilit{\"a}tssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivit{\"a}t gegen{\"u}ber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zellul{\"a}re FA-Ph{\"a}notyp zeichnet sich durch eine erh{\"o}hte Chromosomenbr{\"u}chigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verst{\"a}rkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schl{\"u}sselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon l{\"a}sst sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen z{\"a}hlt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und f{\"u}r die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. F{\"u}r FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen geh{\"o}rt auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet. Durch die vorliegende Arbeit wurde eine n{\"a}here Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Ph{\"a}notyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zellul{\"a}re Ph{\"a}notyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenit{\"a}t der Mutation bewiesen war. Unterst{\"u}tzend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Ph{\"a}notyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage daf{\"u}r, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag f{\"u}r den FANCD2-Monoubiquitinierungsprozess und somit f{\"u}r die Aktivierung der FA-abh{\"a}ngigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Ph{\"a}notyp aufwies. Aufgrund der Ergebnisse l{\"a}sst sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgekl{\"a}rt. Beides tr{\"a}gt zu einem besseren Verst{\"a}ndnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zellul{\"a}re FA-Ph{\"a}notyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies k{\"o}nnte zu der Erkl{\"a}rung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem w{\"a}re eine Verwendung in der Krebstherapie denkbar.}, subject = {Fanconi-An{\"a}mie}, language = {de} } @phdthesis{Kortmann2022, author = {Kortmann, Mareike}, title = {Biodiversity and recreation - Optimizing tourism and forest management in forests affected by bark beetles}, doi = {10.25972/OPUS-24031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as 'catastrophe' diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out.}, subject = {Borkenk{\"a}fer}, language = {en} } @phdthesis{Kuhlemann2022, author = {Kuhlemann, Alexander}, title = {Bioorthogonal labeling of neuronal proteins using super-resolution fluorescence microscopy}, doi = {10.25972/OPUS-24373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The synaptic cleft is of central importance for synaptic transmission, neuronal plasticity and memory and thus well studied in neurobiology. To target proteins of interest with high specificity and strong signal to noise conventional immunohistochemistry relies on the use of fluorescently labeled antibodies. However, investigations on synaptic receptors remain challenging due to the defined size of the synaptic cleft of ~20 nm between opposing pre- and postsynaptic membranes. At this limited space, antibodies bear unwanted side effects such as crosslinking, accessibility issues and a considerable linkage error between fluorophore and target of ~10 nm. With recent single molecule localization microscopy (SMLM) methods enabling localization precisions of a few nanometers, the demand for labeling approaches with minimal linkage error and reliable recognition of the target molecules rises. Within the scope of this work, different labeling techniques for super-resolution fluorescence microscopy were utilized allowing site-specific labeling of a single amino acid in synaptic proteins like kainate receptors (KARs), transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory proteins (TARPs), γ-aminobutyric acid type A receptors (GABA-ARs) and neuroligin 2 (NL2). The method exploits the incorporation of unnatural amino acids (uAAs) in the protein of interest using genetic code expansion (GCE) via amber suppression technology and subsequent labeling with tetrazine functionalized fluorophores. Implementing this technique, hard-to-target proteins such as KARs, TARPs and GABA-ARs could be labeled successfully, which could only be imaged insufficiently with conventional labeling approaches. Furthermore, functional studies involving electrophysiological characterization, as well as FRAP and FRET experiments validated that incorporation of uAAs maintains the native character of the targeted proteins. Next, the method was transferred into primary hippocampal neurons and in combination with super-resolution microscopy it was possible to resolve the nanoscale organization of γ2 and γ8 TARPs. Cluster analysis of dSTORM localization data verified synaptic accumulation of γ2, while γ8 was homogenously distributed along the neuron. Additionally, GCE and bioorthogonal labeling allowed visualization of clickable GABA-A receptors located at postsynaptic compartments in dissociated hippocampal neurons. Moreover, saturation experiments and FRET imaging of clickable multimeric receptors revealed successful binding of multiple tetrazine functionalized fluorophores to uAA-modified dimeric GABA-AR α2 subunits in close proximity (~5 nm). Further utilization of tetrazine-dyes via super-resolution microscopy methods such as dSTORM and click-ExM will provide insights to subunit arrangement in receptors in the future. This work investigated the nanoscale organization of synaptic proteins with minimal linkage error enabling new insights into receptor assembly, trafficking and recycling, as well as protein-protein interactions at synapses. Ultimately, bioorthogonal labeling can help to understand pathologies such as the limbic encephalitis associated with GABA-AR autoantibodies and is already in application for cancer therapies.}, subject = {microscopy}, language = {en} } @phdthesis{Boetzl2022, author = {B{\"o}tzl, Fabian Alexander}, title = {The influence of crop management and adjacent agri-environmental scheme type on natural pest control in differently structured landscapes}, doi = {10.25972/OPUS-24140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Summary Chapters I \& II: General Introduction \& General Methods Agriculture is confronted with a rampant loss of biodiversity potentially eroding ecosystem service potentials and adding up to other stressors like climate change or the consequences of land-use change and intensive management. To counter this 'biodiversity crisis', agri-environment schemes (AES) have been introduced as part of ecological intensification efforts. These AES combine special management regimes with the establishment of tailored habitats to create refuges for biodiversity in agricultural landscapes and thus ensure biodiversity mediated ecosystem services such as pest control. However, little is known about how well different AES habitats fulfil this purpose and whether they benefit ecosystem services in adjacent crop fields. Here I investigated how effective different AES habitats are for restoring biodiversity in different agricultural landscapes (Chapter V) and whether they benefit natural pest control in adjacent oilseed rape (Chapter VI) and winter cereal fields (Chapter VII). I recorded biodiversity and pest control potentials using a variety of different methods (Chapters II, V, VI \& VII). Moreover, I validated the methodology I used to assess predator assemblages and predation rates (Chapters III \& IV). Chapter III: How to record ground dwelling predators? Testing methodology is critical as it ensures scientific standards and trustworthy results. Pitfall traps are widely used to record ground dwelling predators, but little is known about how different trap types affect catches. I compared different types of pitfall traps that had been used in previous studies in respect to resulting carabid beetle assemblages. While barrier traps collected more species and deliver more complete species inventories, conventional simple pitfall traps provide reliable results with comparatively little handling effort. Placing several simple pitfall traps in the field can compensate the difference while still saving handling effort.   Chapter IV: How to record predation rates? A plethora of methods has been proposed and used for recording predation rates, but these have rarely been validated before use. I assessed whether a novel approach to record predation, the use of sentinel prey cards with glued on aphids, delivers realistic results. I compared different sampling efforts and showed that obtained predation rates were similar and could be linked to predator (carabid beetle) densities and body-sizes (a proxy often used for food intake rates). Thus, the method delivers reliable and meaningful predation rates. Chapter V: Do AES habitats benefit multi-taxa biodiversity? The main goal of AES is the conservation of biodiversity in agricultural landscapes. I investigated how effectively AES habitats with different temporal continuity fulfil this goal in differently structured landscapes. The different AES habitats investigated had variable effects on local biodiversity. Temporal continuity of AES habitats was the most important predictor with older, more temporally continuous habitats harbouring higher overall biodiversity and different species assemblages in most taxonomic groups than younger AES habitats. Results however varied among taxonomic groups and natural enemies were equally supported by younger habitats. Semi-natural habitats in the surrounding landscape and AES habitat size were of minor importance for local biodiversity and had limited effects. This stresses that newly established AES habitats alone cannot restore farmland biodiversity. Both AES habitats as well as more continuous semi-natural habitats synergistically increase overall biodiversity in agricultural landscapes. Chapter VI: The effects of AES habitats on predators in adjacent oilseed rape fields Apart from biodiversity conservation, ensuring ecosystem service delivery in agricultural landscapes is a crucial goal of AES. I therefore investigated the effects of adjacent AES habitats on ground dwelling predator assemblages in oilseed rape fields. I found clear distance decay effects from the field edges into the field centres on both richness and densities of ground dwelling predators. Direct effects of adjacent AES habitats on assemblages in oilseed rape fields however were limited and only visible in functional traits of carabid beetle assemblages. Adjacent AES habitats doubled the proportion of predatory carabid beetles indicating a beneficial role for pest control. My results show that pest control potentials are largest close to the field edges and beneficial effects are comparably short ranged. Chapter VII: The effects of AES habitats on pest control in adjacent cereal fields Whether distance functions and potential effects of AES habitats are universal across crops is unknown. Therefore, I assessed distance functions of predators, pests, predation rates and yields after crop rotation in winter cereals using the same study design as in the previous year. Resulting distance functions were not uniform and differed from those found in oilseed rape in the previous year, indicating that the interactions between certain adjacent habitats vary with habitat and crop types. Distance functions of cereal-leaf beetles (important cereal pests) and parasitoid wasps were moreover modulated by semi-natural habitat proportion in the surrounding landscapes. Field edges buffered assemblage changes in carabid beetle assemblages over crop rotation confirming their important function as refuges for natural enemies. My results emphasize the beneficial role of field edges for pest control potentials. These findings back the calls for smaller field sizes and more diverse, more heterogeneously structured agricultural landscapes. Chapter VIII: General Discussion Countering biodiversity loss and ensuring ecosystem service provision in agricultural landscapes is intricate and requires strategic planning and restructuring of these landscapes. I showed that agricultural landscapes could benefit maximally from (i) a mixture of AES habitats and semi-natural habitats to support high levels of overall biodiversity and from (ii) smaller continuously managed agricultural areas (i.e. smaller field sizes or the insertion of AES elements within large fields) to maximize natural pest control potentials in crop fields. I propose a mosaic of younger AES habitats and semi-natural habitats to support ecosystem service providers and increase edge density for ecosystem service spillover into adjacent crops. The optimal extent and density of this network as well as the location in which AES and semi-natural habitats interact most beneficially with adjacent crops need further investigation. My results provide a further step towards more sustainable agricultural landscapes that simultaneously allow biodiversity to persist and maintain agricultural production under the framework of ecological intensification.}, subject = {{\"O}kologie}, language = {en} } @phdthesis{Vellmer2022, author = {Vellmer, Tim}, title = {New insights into the histone variant H2A.Z incorporation pathway in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-25796}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The histone variant H2A.Z is a key player in transcription regulation in eukaryotes. Histone acetylations by the NuA4/TIP60 complex are required to enable proper incorporation of the histone variant and to promote the recruitment of other complexes and proteins required for transcription initiation. The second key player in H2A.Z-mediated transcription is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant. By the time this project started little was known about H2A.Z in the unicellular parasite Trypanosoma brucei. Like in other eukaryotes H2A.Z was exclusively found in the transcription start sites of the polycistronic transcription units where it keeps the chromatin in an open conformation to enable RNA-polymerase II-mediated transcription. Previous studies showed the variant colocalizing with an acetylation of lysine on histone H4 and a methylation of lysine 4 on histone H3. Data indicated that HAT2 is linked to H2A.Z since it is required for acetylation of lyinse 10 on histone H4. A SWR1-like complex and a complex homologous to the NuA4/TIP60 could not be identified yet. This study aimed at identifying a SWR1-like remodelling complex in T. brucei and at identifying a protein complex orthologous to NuA4/TIP60 as well as at answering the question whether HAT2 is part of this complex or not. To this end, I performed multiple mass spectrometry-coupled co-Immunoprecipitation assays with potential subunits of a SWR1 complex, HAT2 and a putative homolog of a NuA4/TIP60 subunit. In the course of these experiments, I was able to identify the TbSWR1 complex. Subsequent cell fractionation and chromatin immunoprecipitation-coupled sequencing analysis experiments confirmed, that this complex is responsible for the incorporation of the histone variant H2A.Z in T. brucei. In addition to this chromatin remodelling complex, I was also able to identify two histone acetyltransferase complexes assembled around HAT1 and HAT2. In the course of my study data were published by the research group of Nicolai Siegel that identified the histone acetyltransferase HAT2 as being responsible for histone H4 acetylation, in preparation to promote H2A.Z incorporation. The data also indicated that HAT1 is responsible for acetylation of H2A.Z. According to the literature, this acetylation is required for proper transcription initiation. Experimental data generated in this study indicated, that H2A.Z and therefore TbSWR1 is involved in the DNA double strand break response of T. brucei. The identification of the specific complex composition of all three complexes provided some hints about how they could interact with each other in the course of transcription regulation and the DNA double strand break response. A proximity labelling approach performed with one of the subunits of the TbSWR1 complex identified multiple transcription factors, PTM writers and proteins potentially involved in chromatin maintenance. Overall, this work will provide some interesting insights about the composition of the complexes involved in H2A.Z incorporation in T. brucei. Furthermore, it is providing valuable information to set up experiments that could shed some light on RNA-polymerase II-mediated transcription and chromatin remodelling in T. brucei in particular and Kinetoplastids in general.}, subject = {Chromatinremodelling}, language = {en} } @phdthesis{Lasway2022, author = {Lasway, Julius Vincent}, title = {Impact of human land use on bee diversity and plant-pollinator interactions in Tanzania savannah ecosystems}, doi = {10.25972/OPUS-25772}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {One of the pronounced global challenges facing ecologists is how to feed the current growing human population while sustaining biodiversity and ecosystem services. To shed light on this, I investigated the impact of human land use on bee diversity and plant-pollinator interactions in Tanzania Savannah ecosystems. The thesis comprises the following chapters: Chapter I: General Introduction This chapter provides the background information including the study objectives and hypotheses. It highlights the ecological importance of bees and the main threats facing bee pollinators with a focus on two land-use practices namely livestock grazing and agriculture. It also highlights the diversity and global distribution of bees. It further introduces the tropical savannah ecosystem, its climate, and vegetation characteristics and explains spectacular megafauna species of the system that form centers of wildlife tourism and inadequacy knowledge on pollinators diversity of the system. Finally, this chapter describes the study methodology including, the description of the study area, study design, and data collection. Chapter II: Positive effects of low livestock grazing intensity on East African bee assemblages mediated by increases in floral resources The impact of livestock grazing intensity on bee assemblage has been subjected to research over decades. Moreover, most of these studies have been conducted in temperate Europe and America leaving the huge tropical savannah of East Africa less studied. Using sweep netting and pan traps, a total of 183 species (from 2,691 individuals) representing 55 genera and five families were collected from 24 study sites representing three levels of livestock grazing intensity in savannah ecosystem of northern Tanzania. Results have shown that moderate livestock grazing slightly increased bee species richness. However, high livestock grazing intensity led to a strong decline. Besides, results revealed a unimodal distribution pattern of bee species richness and mean annual temperature. It was also found that the effect of livestock grazing and environmental temperature on bee species richness was mediated by a positive effect of moderate grazing on floral resource richness. The study, therefore, reveals that bee communities of the African savannah zone may benefit from low levels of livestock grazing as this favors the growth of flowering plant species. A high level of livestock grazing intensity will cause significant species losses, an effect that may increase with climatic warming. Chapter III: Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands This study investigated the impact of local agriculture intensification on bee diversity in the Afro tropical drylands of northern Tanzania. Using sweep netting and pan traps, a total of 219 species (from 3,428 individuals) representing 58 genera and six families were collected from 24 study sites (distributed from 702 to 1708 m. asl) representing three levels of agriculture intensity spanning an extensive gradient of mean annual temperature. Results showed that bee species richness increased with agricultural intensity and with increasing temperature. However, the effects of agriculture intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on floral resource richness used by bee pollinators. Moreover, results showed that variation of bee body sizes increases with agricultural intensification, "that effect", however, diminished in environments with higher temperatures. This study reveals that bee assemblages in Afrotropical drylands benefit from agriculture intensification in the way it is currently practiced. Further intensification, including year-round irrigated crop monocultures and extensive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. Therefore, to conserve bee communities in Afro tropical drylands and guarantee pollination services, a mixture of savannah and agriculture, with long periods of fallow land should be maintained. Chapter IV: Impact of land use intensification and local features on plants and pollinators in Sub-Saharan smallholder farms For the first time in the region, this study explores the impact of land-use intensification on plants and pollinators in Sub-Saharan smallholder farms. The study complemented field surveys of bees with a modern DNA metabarcoding approach to characterize the foraged plants and thus built networks describing plant-pollinator interactions at the individual insect level. This information was coupled with quantitative traits of landscape composition and floral availability surrounding each farm. The study found that pollinator richness decreased with increasing impervious and agricultural cover in the landscape, whereas the flower density at each farm correlated with pollinator richness. The intensification of agricultural land use and urbanization correlated with a higher foraging niche overlap among pollinators due to the convergence of individuals' flower-visiting strategies. Furthermore, within farms, the higher availability of floral resources drove lower niche overlap among individuals, greater abundance of flower visitors shaped higher generalization at the networks level (H2I), possibly due to increased competition. These mechanistic understandings leading to individuals' foraging niche overlap and generalism at the network level, could imply stability of interactions and the pollination ecosystem service. The integrative survey proved that plant-pollinator systems are largely affected by land use intensification and by local factors in smallholder farms of Sub-Saharan Africa. Thus, policies promoting nature-based solutions, among which the introduction of more pollinator-friendly practices by smallholder farmers, could be effective in mitigating the intensification of both urban and rural landscapes in this region, as well as in similar Sub-Saharan contexts. Chapter V: A synopsis of the Bee occurrence data of northern Tanzania This study represents a synopsis of the bee occurrence data of northern Tanzania obtained from a survey in the Kilimanjaro, Arusha, and Manyara regions. Bees were sampled using two standardized methods, sweep netting and colored pan traps. The study summed up 953 species occurrences of 45 species belonging to 20 genera and four families (Halictidae, Apidae, Megachilidae, and andrenidae) A. This study serves as the baseline information in understanding the diversity and distribution of bees in the northern parts of the country. Understanding the richness and distribution of bees is a critical step in devising robust conservation and monitoring strategies for their populations since limited taxonomic information of the existing and unidentified bee species makes their conservation haphazard. Chapter VI: General discussion In general, findings obtained in these studies suggest that livestock grazing and agriculture intensification affects bee assemblages and floral resources used by bee pollinators. Results have shown that moderate livestock grazing intensity may be important in preserving bee diversity. However, high level of livestock grazing intensity may result in a strong decline in bee species richness and abundance. Moreover, findings indicate that agriculture intensification with seasonal fallow lands supports high floral resource richness promoting high bee diversity in Afrotropical drylands. Nonetheless, natural savannahs were found to contain unique bee species. Therefore, agriculture intensification with seasonal fallow should go in hand with conserving remnant savannah in the landscapes to increase bee diversity and ensure pollination services. Likewise, findings suggest that increasing urbanization and agriculture cover at the landscape level reduce plant and pollinator biodiversity with negative impacts on their complex interactions with plants. Conversely, local scale availability of floral resources has shown the positive effects in buffering pollinators decline and mitigating all detrimental effects induced by land-use intensification. Moreover, findings suggest that the impact of human land use (livestock grazing and agriculture) do not act in isolation but synergistically interacts with climatic factors such as mean annual temperature, MAT. The impact of MAT on bee species richness in grazing gradient showed to be more detrimental than in agriculture habitats. This could probably be explained by the remaining vegetation cover following anthropogenic disturbance. Meaning that the remaining vegetation cover in the agricultural gradient probably absorbs the solar radiations hence reducing detrimental effect of mean annual temperature on bee species richness. This one is not the case in grazing gradient since the impact of livestock grazing is severe, leaving the bare land with no vegetation cover. Finally, our findings conclude that understanding the interplay of multiple anthropogenic activities and their interaction with MAT as a consequence of ongoing climate change is necessary for mitigating their potential consequences on bee assemblages and the provision of ecosystem services. Morever, future increases in livestock grazing and agriculture intensification (including year-round crop irrigated monocultures and excessive use of agrochemicals) may lead to undesirable consequences such as species loss and impair provision of pollination services.}, subject = {Human land use}, language = {en} } @article{BahenaDaftarianMaroofianetal.2022, author = {Bahena, Paulina and Daftarian, Narsis and Maroofian, Reza and Linares, Paola and Villalobos, Daniel and Mirrahimi, Mehraban and Rad, Aboulfazl and Doll, Julia and Hofrichter, Michaela A. H. and Koparir, Asuman and R{\"o}der, Tabea and Han, Seungbin and Sabbaghi, Hamideh and Ahmadieh, Hamid and Behboudi, Hassan and Villanueva-Mendoza, Cristina and Cort{\´e}s-Gonzalez, Vianney and Zamora-Ortiz, Rocio and Kohl, Susanne and Kuehlewein, Laura and Darvish, Hossein and Alehabib, Elham and La Arenas-Sordo, Maria de Luz and Suri, Fatemeh and Vona, Barbara and Haaf, Thomas}, title = {Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment}, series = {Human Genetics}, volume = {141}, journal = {Human Genetics}, number = {3-4}, issn = {1432-1203}, doi = {10.1007/s00439-021-02303-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267750}, pages = {785-803}, year = {2022}, abstract = {Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75\%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15\%) probands displayed other genetic entities with dual sensory impairment, including Alstr{\"o}m syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92\%. Two (3\%) probands were partially solved and only 3 (5\%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.}, language = {en} } @phdthesis{Niehoerster2022, author = {Nieh{\"o}rster, Thomas}, title = {Spektral aufgel{\"o}ste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben}, doi = {10.25972/OPUS-29657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode f{\"u}r biologische Proben, bei der Biomolek{\"u}le selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolek{\"u}len gleichzeitig m{\"o}glich, wobei {\"u}blicherweise verschiedene Farbstoffe eingesetzt werden, die {\"u}ber ihre Spektren unterschieden werden k{\"o}nnen. Um die Anzahl gleichzeitig verwendbarer F{\"a}rbungen zu maximieren, wird in dieser Arbeit zus{\"a}tzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgel{\"o}ster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenl{\"a}ngen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Aufl{\"o}sung von 32 Kan{\"a}len und gleichzeitig mit sehr hoher zeitlicher Aufl{\"o}sung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so f{\"u}r jedes Pixel die Beitr{\"a}ge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser f{\"u}nf verschiedene F{\"a}rbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 F{\"a}rbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun F{\"a}rbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivit{\"a}t des sFLIM-Systems genutzt werden, um verschiedene Zielmolek{\"u}le voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war m{\"o}glich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmolek{\"u}ls geringf{\"u}gig in Abh{\"a}ngigkeit von seiner Umgebung {\"a}ndern. Weiterhin konnte die sFLIM-Technik mit der hochaufl{\"o}senden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgel{\"o}ste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser ben{\"o}tigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgr{\"o}ßen sowie deren Auswertung durch den Pattern-Matching-Algorithmus erm{\"o}glichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie f{\"u}r Mehrfachf{\"a}rbungen.}, subject = {Fluoreszenzmikroskopie}, language = {de} } @article{LichterPaulPaulietal.2022, author = {Lichter, Katharina and Paul, Mila Marie and Pauli, Martin and Schoch, Susanne and Kollmannsberger, Philip and Stigloher, Christian and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse}, series = {Cell Reports}, volume = {40}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2022.111382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300913}, year = {2022}, abstract = {Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{-/-}\) and wild-type mice. In RIM1α\(^{-/-}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{-/-}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{KayaZeebEngelmayerStrassburgeretal.2022, author = {Kaya-Zeeb, Sinan and Engelmayer, Lorenz and Straßburger, Mara and Bayer, Jasmin and B{\"a}hre, Heike and Seifert, Roland and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Octopamine drives honeybee thermogenesis}, series = {eLife}, volume = {11}, journal = {eLife}, doi = {10.7554/eLife.74334}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301327}, year = {2022}, abstract = {In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.}, language = {en} } @article{ReinhardBertoliniSaitoetal.2022, author = {Reinhard, Nils and Bertolini, Enrico and Saito, Aika and Sekiguchi, Manabu and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond}, series = {Journal of Comparative Neurology}, volume = {530}, journal = {Journal of Comparative Neurology}, number = {9}, doi = {10.1002/cne.25294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276456}, pages = {1507 -- 1529}, year = {2022}, abstract = {Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.}, language = {en} } @article{LaswayPetersNjovuetal.2022, author = {Lasway, Julius V. and Peters, Marcell K. and Njovu, Henry K. and Eardley, Connal and Pauly, Alain and Steffan-Dewenter, Ingolf}, title = {Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands}, series = {Journal of Applied Ecology}, volume = {59}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.14296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311877}, pages = {3014 -- 3026}, year = {2022}, abstract = {The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global-dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body-size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off-growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land-use intensification, including year-round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained.}, language = {en} } @article{SponslerRequierKallniketal.2022, author = {Sponsler, Douglas B. and Requier, Fabrice and Kallnik, Katharina and Classen, Alice and Maihoff, Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts}, series = {Ecology}, volume = {103}, journal = {Ecology}, number = {7}, doi = {10.1002/ecy.3712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287199}, year = {2022}, abstract = {Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.}, language = {en} } @article{GebertSteffan‐DewenterKronbachetal.2022, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Kronbach, Patrick and Peters, Marcell K.}, title = {The role of diversity, body size and climate in dung removal: A correlative and experimental approach}, series = {Journal of Animal Ecology}, volume = {91}, journal = {Journal of Animal Ecology}, number = {11}, doi = {10.1111/1365-2656.13798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293907}, pages = {2181 -- 2191}, year = {2022}, abstract = {The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity-mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity-ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal.}, language = {en} } @article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @article{UhlerHaaseHoffmannetal.2022, author = {Uhler, Johannes and Haase, Peter and Hoffmann, Lara and Hothorn, Torsten and Schmidl, J{\"u}rgen and Stoll, Stefan and Welti, Ellen A. R. and Buse, J{\"o}rn and M{\"u}ller, J{\"o}rg}, title = {A comparison of different Malaise trap types}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293694}, pages = {666 -- 672}, year = {2022}, abstract = {Recent reports on insect decline have highlighted the need for long-term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20\%-55\%, not strictly following trap size but varying with trap type. Total species richness was 20\%-38\% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground-dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies.}, language = {en} } @article{KohlSteffan‐Dewenter2022, author = {Kohl, Patrick L. and Steffan-Dewenter, Ingolf}, title = {Nectar robbing rather than pollinator availability constrains reproduction of a bee-flowered plant at high elevations}, series = {Ecosphere}, volume = {13}, journal = {Ecosphere}, number = {6}, doi = {10.1002/ecs2.4077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287141}, year = {2022}, abstract = {Abiotic factors are generally assumed to determine whether species can exist at the extreme ends of environmental gradients, for example, at high elevations, whereas the role of biotic interactions is less clear. On temperate mountains, insect-pollinated plant species with bilaterally symmetrical flowers exhibit a parallel elevational decline in species richness and abundance with bees. This suggests that the lack of mutualistic interaction partners sets the elevational range limits of plants via a reduction in reproductive success. We used the bee-pollinated mountain plant Clinopodium alpinum (Lamiaceae), which blooms along a continuous 1000-m elevational gradient and has bilaterally symmetrical flowers, as a model to test the predicted parallel elevational decline in flower visitation and seed production. Although the community of flower visitors changed with elevation, the flower visitation rate by the most frequent visitors, bumble bees (33.8\% of legitimate visits), and the overall rate of flower visitation by potential pollinators did not vary significantly with elevation. However, we discovered that nectar robbing by bumble bees and nectar theft by ants, two interactions with potentially negative effects on flowers, sharply increased with elevation. Seed set depended on pollinators across elevations and followed a weak hump-shaped pattern, peaking at mid-elevations and decreasing by about 20\% toward both elevational range edges. Considering the mid- and high elevations, elevational variation in seed production could not be explained by legitimate bee visitation rates but was inversely correlated with the frequency of nectar robbing. Our observations challenge the hypothesis that a decrease in the availability of pollinators limits seed production of bee-flowered plants at high elevations but suggest that an increase in negative interactions (nectar robbing and larceny) constrains reproductive success.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} } @article{FleischmannGrobRoessler2022, author = {Fleischmann, Pauline N. and Grob, Robin and R{\"o}ssler, Wolfgang}, title = {Magnetosensation during re-learning walks in desert ants (Cataglyphis nodus)}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {1}, issn = {1432-1351}, doi = {10.1007/s00359-021-01511-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266556}, pages = {125-133}, year = {2022}, abstract = {At the beginning of their foraging careers, Cataglyphis desert ants calibrate their compass systems and learn the visual panorama surrounding the nest entrance. For that, they perform well-structured initial learning walks. During rotational body movements (pirouettes), na{\"i}ve ants (novices) gaze back to the nest entrance to memorize their way back to the nest. To align their gaze directions, they rely on the geomagnetic field as a compass cue. In contrast, experienced ants (foragers) use celestial compass cues for path integration during food search. If the panorama at the nest entrance is changed, foragers perform re-learning walks prior to heading out on new foraging excursions. Here, we show that initial learning walks and re-learning walks are structurally different. During re-learning walks, foragers circle around the nest entrance before leaving the nest area to search for food. During pirouettes, they do not gaze back to the nest entrance. In addition, foragers do not use the magnetic field as a compass cue to align their gaze directions during re-learning walk pirouettes. Nevertheless, magnetic alterations during re-learning walks under manipulated panoramic conditions induce changes in nest-directed views indicating that foragers are still magnetosensitive in a cue conflict situation.}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} } @article{PietroGarciaHartmannReisslandetal.2022, author = {Pietro-Garcia, Christian and Hartmann, Oliver and Reissland, Michaela and Fischer, Thomas and Maier, Carina R. and Rosenfeldt, Mathias and Sch{\"u}lein-V{\"o}lk, Christina and Klann, Kevin and Kalb, Reinhard and Dikic, Ivan and M{\"u}nch, Christian and Diefenbacher, Markus E.}, title = {Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway}, series = {Cell Death and Differentiation}, volume = {29}, journal = {Cell Death and Differentiation}, number = {3}, issn = {1476-5403}, doi = {10.1038/s41418-021-00875-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273014}, pages = {568-584}, year = {2022}, abstract = {Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.}, language = {en} } @phdthesis{Vogel2022, author = {Vogel, Cassandra Ezra}, title = {The effects of land-use and agroecological practices on biodiversity and ecosystem services in tropical smallholder farms}, doi = {10.25972/OPUS-29066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290661}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Biodiversity is in rapid decline worldwide. These declines are more pronounced in areas that are currently biodiversity rich, but economically poor - essentially describing many tropical regions in the Global South where landscapes are dominated by smallholder agriculture. Agriculture is an important driver of biodiversity decline, through habitat destruction and unsustainable practices. Ironically, agriculture itself is dependent on a range of ecosystem services, such as pollination and pest control, provided by biodiversity. Biodiversity on fields and the delivery of ecosystem services to crops is often closely tied to the composition of the surrounding landscape - complex landscapes with a higher proportion of (semi-)natural habitats tend to support a high abundances and biodiversity of pollinators and natural enemies that are beneficial to crop production. However, past landscape scale studies have focused primarily on industrialized agricultural landscapes in the Global North, and context dependent differences between regions and agricultural systems are understudied. Smallholder agriculture supports 2 billion people worldwide and contributes to over half the world's food supply. Yet smallholders, particularly in sub-Saharan Africa, are underrepresented in research investigating the consequences of landscape change and agricultural practices. Where research in smallholder agriculture is conducted, the focus is often on commodity crops, such as cacao, and less on crops that are directly consumed by smallholder households, though the loss of services to these crops could potentially impact the most vulnerable farmers the hardest. Agroecology - a holistic and nature-based approach to agriculture, provides an alternative to unsustainable input-intensive agriculture. Agroecology has been found to benefit smallholders through improved agronomical and food-security outcomes. Co-benefits of agroecological practices with biodiversity and ecosystem services are assumed, but not often empirically tested. In addition, the local and landscape effects on biodiversity and ecosystem services are more commonly studied in isolation, but their potentially interactive effects are so far little explored. Our study region in northern Malawi exemplifies many challenges experienced by smallholder farmers throughout sub-Saharan Africa and more generally in the Global South. Malawi is located in a global biodiversity hotspot, but biodiversity is threatened by rapid habitat loss and a push for input-intensive agriculture by government and other stakeholders. In contrast, agroecology has been effectively promoted and implemented in the study region. We investigated how land-use differences and the agroecological practices affects biodiversity and ecosystem services of multiple taxa in a maize-bean intercropping system (Chapter 2), and pollination of pumpkin (Chapter 3) and pigeon pea (Chapter 4). Additionally, the effects of local and landscape scale shrub- to farmland habitat conversion was investigated on butterfly communities, as well as the potential for agroecology to mitigate these effects (Chapter 5).}, language = {en} } @article{MaihoffBohlkeBrockmannetal.2022, author = {Maihoff, Fabienne and Bohlke, Kyte and Brockmann, Axel and Schmitt, Thomas}, title = {Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0271745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301353}, year = {2022}, abstract = {Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species.}, language = {en} } @article{ReinhardHelmerichBorasetal.2022, author = {Reinhard, Sebastian and Helmerich, Dominic A. and Boras, Dominik and Sauer, Markus and Kollmannsberger, Philip}, title = {ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy}, series = {BMC Bioinformatics}, volume = {23}, journal = {BMC Bioinformatics}, number = {1}, doi = {10.1186/s12859-022-05071-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299768}, year = {2022}, abstract = {Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility.}, language = {en} }