@article{RonaldHoebartner2020, author = {Ronald, Micura and H{\"o}bartner, Claudia}, title = {Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes}, series = {Chemical Society Reviews}, journal = {Chemical Society Reviews}, edition = {Advance Article}, doi = {10.1039/D0CS00617C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212133}, year = {2020}, abstract = {This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.}, language = {en} } @phdthesis{Kraus2020, author = {Kraus, Michael}, title = {The Conversion of Bifidobacterium adolescentis Sucrose Phosphorylase into a Polyphenol Transglucosidase via Structure-based Enzyme Engineering}, doi = {10.25972/OPUS-19247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The initial goal was the conversion of Bifidobacterium adolescentis Sucrose Phosphorylase (BaSP) into a polyphenol glucosidase by structure based enzyme engineering. BaSP was chosen because of its ability to utilize sucrose, an economically viable and sustainable donor substrate, and transfer the glucosyl moiety to various acceptor substrates. The introduction of aromatic residues into the active site was considered a viable way to render it more suitable for aromatic acceptor compounds by reducing its polarity and potentially introducing π-π-interactions with the polyphenols. An investigation of the active site revealed Gln345 as a suitable mutagenesis target. As a proof of concept BaSP Q345F was employed in the glycosylation of (+)-catechin, (-)-epicatechin and resveratrol. The variant was selective for the aromatic acceptor substrates and the glucose disaccharide side reaction was only observed after almost quantitative conversion of the aromatic substrates. A crystal structure of BaSP Q345F in complex with glucose was obtained and it displayed an unexpected shift of an entire domain by 3.3 {\AA}. A crystal structure of BaSP D192N-Q345F, an inactive variant in complex with resveratrol-3-α-D-glucosid, the glucosylation product of resveratrol, synthesized by BaSP Q345F was solved. It proved that the domain shift is in fact responsible for the ability of the variant to glycosylate aromatic compounds. Simultaneously a ligand free crystal structure of BaSP Q345F disproved an induced fit effect as the cause of the domain shift. The missing link, a crystal structure of BaSP Q345F in the F-conformation is obtained. This does not feature the domain shift, but is in outstanding agreement with the wildtype structure. The domain shift is therefore not static but rather a step in a dynamic process. It is further conceivable that the domain shifted conformation of BaSP Q345F resembles the open conformation of the wild type and that an adjustment of a conformational equilibrium as a result of the Q345F point mutation is observed. An investigation into the background reaction, the formation of glucose-glucose disaccharides of BaSP Q345F and three further variants that addressed the same region (L341C, D316C-L341C and D316C-N340C) revealed the formation of nigerose by BaSP Q345F.}, subject = {Phosphorylase}, language = {en} } @phdthesis{LiebschergebBloehbaum2020, author = {Liebscher [geb. Bl{\"o}hbaum], Julia}, title = {Side chain functional poly(2-oxazoline)s for biomedical applications}, doi = {10.25972/OPUS-20396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The aim of the thesis was to develop water soluble poly(2-oxazoline) (POx) copolymers with new side group functionalities, which can be used for the formation of hydrogels in biomedical applications and for the development of peptide-polymer conjugates. First, random copolymers of the monomer MeOx or EtOx with ButEnOx and EtOx with DecEnOx were synthesized and characterized. The vinyl functionality brought into the copolymer by the monomers ButEnOx and DecEnOx would later serve for post-polymerization functionalization. The synthesized copolymers were further functionalized with thiols via post-polymerization functionalization using a newly developed synthesis protocol or with a protected catechol molecule for hydrogel formation. For the formation of peptide-polymer conjugates, a cyclic thioester, namely thiolactone acrylamide and an azlactone precursor, whose synthesis was newly developed, were attached to the side chain of P(EtOx-co-ButEnOx) copolymers. The application of the functionalized thiol copolymers as hydrogels using thiol-ene chemistry for cross-linking was demonstrated. The swelling behavior and mechanical properties were characterized. The hydrophilicity of the network as well as the cross-linking density strongly influenced the swelling behavior and the mechanical strength of the hydrogels. All hydrogels showed good cell viability results. The hydrogel networks based on MeOx and EtOx were loaded with two dyes, fluorescein and methylene blue. It was observed that the uptake of the more hydrophilic dye fluorescein depended more on the ability of the hydrogel to swell. In contrast, the uptake of the more hydrophobic dye methylene blue was less dependent on the swelling degree, but much more on the hydrophilicity of the network. For the potential application as cartilage glue, (biohybrid) hydrogels were synthesized based on the catechol-functionalized copolymers, with and without additional fibrinogen, using sodium periodate as the oxidizing agent. The system allowed for degradation due to the incorporated ester linkages at the cross-linking points. The swelling behavior as well as the mechanical properties were characterized. As expected, hydrogels with higher degrees of cross-linking showed less swelling and higher elastic modulus. The addition of fibrinogen however increased the elasticity of the network, which can be favorable for the intended application as a cartilage glue. Biological evaluation clearly demonstrated the advantage of degradable ester links in the hydrogel network, where chondrocytes were able to bridge the artificial gap in contrast to hydrogels without any ester motifs. Lastly, different ways to form peptide-polymer conjugates were presented. Peptides were attached with the thiol of the terminal cysteine group to the vinyl side chain of P(EtOx-co-ButEnOx) copolymers by radical thiol-ene chemistry. Another approach was to use a cyclic thioester, thiolactone, or an azlactone functionality to bind a model peptide via native chemical ligation. The two latter named strategies to bind peptides to POx side chains are especially interesting as one and in the case of thiolactone two free thiols are still present at the binding site after the reaction, which can, for example, be used for further thiol-ene cross-linking to form POx hydrogels. In summary, side functional poly(oxazoline) copolymers show great potential for numerous biomedical applications. The various side chain functionalities can be introduced by an appropriate monomer or by post-polymerization functionalization, as demonstrated. By their multi-functionality, hydrogel characteristics, such as cross-linking degree and mechanical strength, can be fine-tuned and adjusted depending on the application in the human body. In addition, the presented chemoselective and orthogonal reaction strategies can be used in the future to synthesize polymer conjugates, which can, for example, be used in drug delivery or in tissue regeneration.}, subject = {Polymere}, language = {en} } @article{MezaChinchaLindnerSchindleretal.2020, author = {Meza-Chincha, Ana-Lucia and Lindner, Joachim O. and Schindler, Dorothee and Schmidt, David and Krause, Ana-Maria and R{\"o}hr, Merle I. S. and Mitrić, Roland and W{\"u}rthner, Frank}, title = {Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation}, issn = {2041-6539}, doi = {10.1039/d0sc01097a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204653}, year = {2020}, abstract = {Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites.}, language = {en} } @unpublished{ScheitlGhaemMaghamiLenzetal.2020, author = {Scheitl, Carolin P.M. and Ghaem Maghami, Mohammad and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Site-specific RNA methylation by a methyltransferase ribozyme}, series = {Nature}, journal = {Nature}, doi = {10.1038/s41586-020-2854-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218687}, year = {2020}, abstract = {Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification including RNA methylation. Methylated nucleotides belong to the evolutionarily most conserved features of tRNA and rRNA.1,2 Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as methyl group donor. This and other nucleotide-derived cofactors are considered as evolutionary leftovers from an RNA World, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication.3 Chemically diverse ribozymes seem to have been lost in Nature, but may be reconstructed in the laboratory by in vitro selection. Here, we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine (m1A) in a substrate RNA, utilizing O6-methylguanine (m6G) as a small-molecule cofactor. The ribozyme shows a broad RNA sequence scope, as exemplified by site-specific adenosine methylation in tRNAs. This finding provides fundamental insights into RNA's catalytic abilities, serves a synthetic tool to install m1A in RNA, and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes.}, language = {en} } @article{HechtLeowanawatGerlachetal.2020, author = {Hecht, Markus and Leowanawat, Pawaret and Gerlach, Tabea and Stepanenko, Vladimir and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene Bisimide}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {39}, doi = {10.1002/anie.202006744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224586}, pages = {17084 -- 17090}, year = {2020}, abstract = {A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.}, language = {en} } @article{AbdelhameedHabibGodaetal.2020, author = {Abdelhameed, Reda F. A. and Habib, Eman S. and Goda, Marwa S. and Fahim, John Refaat and Hassanean, Hashem A. and Eltamany, Enas E. and Ibrahim, Amany K. and AboulMagd, Asmaa M. and Fayez, Shaimaa and Abd El-kader, Adel M. and Al-Warhi, Tarfah and Bringmann, Gerhard and Ahmed, Safwat A. and Abdelmohsen, Usama Ramadan}, title = {Thalassosterol, a New Cytotoxic Aromatase Inhibitor Ergosterol Derivative from the Red Sea Seagrass Thalassodendron ciliatum}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {7}, doi = {10.3390/md18070354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236085}, year = {2020}, abstract = {Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC\(_{50}\) values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.}, language = {en} } @phdthesis{Kiendl2020, author = {Kiendl, Benjamin}, title = {Application of diamond nanomaterials in catalysis}, doi = {10.25972/OPUS-17941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work the catalytic activity of nanodiamond particles with different dopants and surface terminations and of diamond nanomaterials funtionalized with ruthenium-based photocatalysts was investigated, illustrating materials application in photoredox chemistry and the photo(electro)catalytic reduction of CO2. Regarding the application of diamond nanomaterials in photocatalysis, methods to fabricate and characterize several (un)doped nanoparticles with different surface termination were successfully developed. Various photocatalysts, attached to nanodiamond particles via linker systems, were tested in photoredox catalysis and the photo(electro)catalytic reduction of CO2.}, subject = {Fotokatalyse}, language = {en} } @article{RiethToberLimbachetal.2020, author = {Rieth, Thorsten and Tober, Natalie and Limbach, Daniel and Haspel, Tobias and Sperner, Marcel and Schupp, Niklas and Wicker, Philipp and Glang, Stefan and Lehmann, Matthias and Detert, Heiner}, title = {Impact of substitution pattern and chain length on the thermotropic properties of alkoxy-substituted triphenyl-tristriazolotriazines}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {23}, issn = {1420-3049}, doi = {10.3390/molecules25235761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220019}, year = {2020}, abstract = {Tristriazolotriazines (TTTs) with a threefold alkoxyphenyl substitution were prepared and studied by DSC, polarized optical microscopy (POM) and X-ray scattering. Six pentyloxy chains are sufficient to induce liquid-crystalline behavior in these star-shaped compounds. Thermotropic properties of TTTs with varying substitution patterns and a periphery of linear chains of different lengths, branching in the chain and swallow-tails, are compared. Generally, these disks display broad and stable thermotropic mesophases, with the tangential TTT being superior to the radial isomer. The structure-property relationships of the number of alkyl chains, their position, length and structure were studied.}, language = {en} } @article{MerzDietzVonhausenetal.2020, author = {Merz, Julia and Dietz, Maximilian and Vonhausen, Yvonne and W{\"o}ber, Frederik and Friedrich, Alexandra and Sieh, Daniel and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Holzapfel, Marco and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {2}, doi = {10.1002/chem.201904219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207486}, pages = {438-453}, year = {2020}, abstract = {We synthesized new pyrene derivatives with strong bis(para -methoxyphenyl)amine donors at the 2,7-positions and n -azaacene acceptors at the K-region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7-substituted pyrenes but not for K-region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin-Day class-II and delocalized Robin-Day class-III species.}, language = {en} } @article{SteinmetzgerBaeuerleinHoebartner2020, author = {Steinmetzger, Christian and B{\"a}uerlein, Carmen and H{\"o}bartner, Claudia}, title = {Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201916707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203084}, pages = {6760-6764}, year = {2020}, abstract = {RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Here we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding site mapping and may also be applied for responsive aptamer devices.}, language = {en} } @article{GoetzKunzFinketal.2020, author = {G{\"o}tz, Ralph and Kunz, Tobias C. and Fink, Julian and Solger, Franziska and Schlegel, Jan and Seibel, J{\"u}rgen and Kozjak-Pavlovic, Vera and Rudel, Thomas and Sauer, Markus}, title = {Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19897-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231248}, year = {2020}, abstract = {Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.}, language = {en} } @article{WehnerRoehrStepanenkoetal.2020, author = {Wehner, Marius and R{\"o}hr, Merle Insa Silja and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Control of self-assembly pathways toward conglomerate and racemic supramolecular polymers}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19189-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230580}, year = {2020}, abstract = {Homo- and heterochiral aggregation during crystallization of organic molecules has significance both for fundamental questions related to the origin of life as well as for the separation of homochiral compounds from their racemates in industrial processes. Herein, we analyse these phenomena at the lowest level of hierarchy - that is the self-assembly of a racemic mixture of (R,R)- and (S,S)-PBI into 1D supramolecular polymers. By a combination of UV/vis and NMR spectroscopy as well as atomic force microscopy, we demonstrate that homochiral aggregation of the racemic mixture leads to the formation of two types of supramolecular conglomerates under kinetic control, while under thermodynamic control heterochiral aggregation is preferred, affording a racemic supramolecular polymer. FT-IR spectroscopy and quantum-chemical calculations reveal unique packing arrangements and hydrogen-bonding patterns within these supramolecular polymers. Time-, concentration- and temperature-dependent UV/vis experiments provide further insights into the kinetic and thermodynamic control of the conglomerate and racemic supramolecular polymer formation. Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.}, language = {en} } @article{SyamalaWuerthner2020, author = {Syamala, Pradeep P. N. and W{\"u}rthner, Frank}, title = {Modulation of the Self-Assembly of π-Amphiphiles in Water from Enthalpy- to Entropy-Driven by Enwrapping Substituents}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {38}, doi = {10.1002/chem.202000995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218107}, pages = {8426 -- 8434}, year = {2020}, abstract = {Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π-cores of amphiphilic naphthalene and perylene bisimide dyes, self-assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π-cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π-cores are strongly sequestered by the OEG chains. These molecules self-assemble at elevated temperatures in an entropy-driven process according to temperature- and concentration-dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self-assembly originates upon cooling in an enthalpy-driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of "high energy water" from the hydrophobic π-surfaces as well as dispersion interactions between the π-scaffolds which drive the self-assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen-bonded water molecules from OEG units it is in particular the increase in conformational entropy of back-folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self-assembly of amphiphilic dyes in water from enthalpy- to entropy-driven.}, language = {en} } @article{AbdelhameedHabibEltahawyetal.2020, author = {Abdelhameed, Reda F. A. and Habib, Eman S. and Eltahawy, Nermeen A. and Hassanean, Hashim A. and Ibrahim, Amany K. and Mohammed, Anber F. and Fayez, Shaimaa and Hayallah, Alaa M. and Yamada, Koji and Behery, Fathy A. and Al-Sanea, Mohammad M. and Alzarea, Sami I. and Bringmann, Gerhard and Ahmed, Safwat A. and Abdelmohsen, Usama Ramadan}, title = {New cytotoxic natural products from the Red Sea sponge Stylissa carteri}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {5}, issn = {1660-3397}, doi = {10.3390/md18050241}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205795}, year = {2020}, abstract = {Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (1), and a cerebroside, stylissoside A (2), from the methanol extract of the Red Sea sponge Stylissa carteri. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract's metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, 1 and 2, displayed strong cytotoxicity against the MCF-7 cell line, with IC\(_{50}\) values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC\(_{50}\) at 36.8 ± 0.16 µM for 1 and IC\(_{50}\) 30.5 ± 0.23 µM for 2 compared to the standard drug cisplatin. Molecular docking experiments showed that 1 and 2 displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents.}, language = {en} } @phdthesis{Steinmetzger2020, author = {Steinmetzger, Christian}, title = {Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function}, doi = {10.25972/OPUS-20760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the "vegetable" nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow-red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili-HBI complexes, a novel base-ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices.}, subject = {Aptamer}, language = {en} } @article{MerzDietrichNitschetal.2020, author = {Merz, Julia and Dietrich, Lena and Nitsch, J{\"o}rn and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Mims, David and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {52}, doi = {10.1002/chem.202001475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217835}, pages = {12050 -- 12059}, year = {2020}, abstract = {We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)\(_{4}\)-Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.}, language = {en} } @article{ZahranAlbohyKhaliletal.2020, author = {Zahran, Eman Maher and Albohy, Amgad and Khalil, Amira and Ibrahim, Alyaa Hatem and Ahmed, Heba Ali and El-Hossary, Ebaa M. and Bringmann, Gerhard and Abdelmohsen, Usama Ramadan}, title = {Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {12}, issn = {1660-3397}, doi = {10.3390/md18120645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220041}, year = {2020}, abstract = {Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.}, language = {en} } @article{SolgerKunzFinketal.2020, author = {Solger, Franziska and Kunz, Tobias C. and Fink, Julian and Paprotka, Kerstin and Pfister, Pauline and Hagen, Franziska and Schumacher, Fabian and Kleuser, Burkhard and Seibel, J{\"u}rgen and Rudel, Thomas}, title = {A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204111}, year = {2020}, abstract = {Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.}, language = {en} } @article{QuastGescheidtSpichty2020, author = {Quast, Helmut and Gescheidt, Georg and Spichty, Martin}, title = {Topological dynamics of a radical ion pair: Experimental and computational assessment at the relevant nanosecond timescale}, series = {Chemistry}, volume = {2}, journal = {Chemistry}, number = {2}, issn = {2624-8549}, doi = {10.3390/chemistry2020014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285195}, pages = {219 -- 230}, year = {2020}, abstract = {Chemical processes mostly happen in fluid environments where reaction partners encounter via diffusion. The bimolecular encounters take place at a nanosecond time scale. The chemical environment (e.g., solvent molecules, (counter)ions) has a decisive influence on the reactivity as it determines the contact time between two molecules and affects the energetics. For understanding reactivity at an atomic level and at the appropriate dynamic time scale, it is crucial to combine matching experimental and theoretical data. Here, we have utilized all-atom molecular-dynamics simulations for accessing the key time scale (nanoseconds) using a QM/MM-Hamiltonian. Ion pairs consisting of a radical ion and its counterion are ideal systems to assess the theoretical predictions because they reflect dynamics at an appropriate time scale when studied by temperature-dependent EPR spectroscopy. We have investigated a diketone radical anion with its tetra-ethylammonium counterion. We have established a funnel-like transition path connecting two (equivalent) complexation sites. The agreement between the molecular-dynamics simulation and the experimental data presents a new paradigm for ion-ion interactions. This study exemplarily demonstrates the impact of the molecular environment on the topological states of reaction intermediates and how these states can be consistently elucidated through the combination of theory and experiment. We anticipate that our findings will contribute to the prediction of bimolecular transformations in the condensed phase with relevance to chemical synthesis, polymers, and biological activity.}, language = {en} } @article{MenekseRennerMahlmeisteretal.2020, author = {Menekse, Kaan and Renner, Rebecca and Mahlmeister, Bernhard and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Bowl-shaped naphthalimide-annulated corannulene as nonfullerene acceptor in organic solar cells}, series = {Organic Materials}, volume = {2}, journal = {Organic Materials}, number = {3}, issn = {2625-1825}, doi = {10.1055/s-0040-1714283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299095}, pages = {229-234}, year = {2020}, abstract = {An electron-poor bowl-shaped naphthalimide-annulated corannulene with branched alkyl residues in the imide position was synthesized by a palladium-catalyzed cross-coupling annulation sequence. This dipolar compound exhibits strong absorption in the visible range along with a low-lying LUMO level at -3.85 eV, enabling n-type charge transport in organic thin-film transistors. Furthermore, we processed inverted bulk-heterojunction solar cells in combination with the two donor polymers PCE-10 and PM6 to achieve open-circuit voltages up to 1.04 V. By using a blend of the self-assembled naphthalimide-annulated corannulene and PCE-10, we were able to obtain a power conversion efficiency of up to 2.1\%, which is to the best of our knowledge the highest reported value for a corannulene-based organic solar cell to date.}, language = {en} } @article{HofmannFayezScheineretal.2020, author = {Hofmann, Julian and Fayez, Shaimaa and Scheiner, Matthias and Hoffmann, Matthias and Oerter, Sabrina and Appelt-Menzel, Antje and Maher, Pamela and Maurice, Tangui and Bringmann, Gerhard and Decker, Michael}, title = {Sterubin: Enantioresolution and Configurational Stability, Enantiomeric Purity in Nature, and Neuroprotective Activity in Vitro and in Vivo}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {32}, doi = {10.1002/chem.202001264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215993}, pages = {7299 -- 7308}, year = {2020}, abstract = {Alzheimer′s disease (AD) is a neurological disorder with still no preventive or curative treatment. Flavonoids are phytochemicals with potential therapeutic value. Previous studies described the flavanone sterubin isolated from the Californian plant Eriodictyon californicum as a potent neuroprotectant in several in vitro assays. Herein, the resolution of synthetic racemic sterubin (1) into its two enantiomers, (R)-1 and (S)-1, is described, which has been performed on a chiral chromatographic phase, and their stereochemical assignment online by HPLC-ECD coupling. (R)-1 and (S)-1 showed comparable neuroprotection in vitro with no significant differences. While the pure stereoisomers were configurationally stable in methanol, fast racemization was observed in the presence of culture medium. We also established the occurrence of extracted sterubin as its pure (S)-enantiomer. Moreover, the activity of sterubin (1) was investigated for the first time in vivo, in an AD mouse model. Sterubin (1) showed a significant positive impact on short- and long-term memory at low dosages.}, language = {en} } @article{LehmannDechantWehetal.2020, author = {Lehmann, Matthias and Dechant, Moritz and Weh, Dominik and Freytag, Emely}, title = {Metal Phthalocyanine-Fullerene Dyads: Promising Lamellar Columnar Donor-Acceptor Liquid Crystal Phases}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {8}, doi = {10.1002/cplu.202000540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218531}, pages = {1934 -- 1938}, year = {2020}, abstract = {Liquid crystal (LC) shape-amphiphiles with a disc tethered to a fullerene have been intensely studied for the application in photovoltaics, and helical nanosegregation of C\(_{60}\) has been claimed around the π-stacking disks based on X-ray results. The most promising materials reported to date have been resynthesized and studied comprehensively by XRS, density measurements, modelling, and electron density reconstruction. In contrast to previous reports, the results indicate that metal phthalocyanine-fullerene mesogens pack in lamellar columnar phases with p2gm symmetry. Fullerenes assemble in layers and are flanked by phthalocyanine columns, thus explaining the balanced charge carrier mobility of electrons and holes. Such variable donor-acceptor structures are promising for organic electronic applications.}, language = {en} } @article{BinasBessiSchwalbe2020, author = {Binas, Oliver and Bessi, Irene and Schwalbe, Harald}, title = {Structure Validation of G-Rich RNAs in Noncoding Regions of the Human Genome}, series = {ChemBioChem}, volume = {21}, journal = {ChemBioChem}, number = {11}, doi = {10.1002/cbic.201900696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214892}, pages = {1656 -- 1663}, year = {2020}, abstract = {We present the rapid biophysical characterization of six previously reported putative G-quadruplex-forming RNAs from the 5′-untranslated region (5′-UTR) of silvestrol-sensitive transcripts for investigation of their secondary structures. By NMR and CD spectroscopic analysis, we found that only a single sequence—[AGG]\(_{2}\)[CGG]\(_{2}\)C—folds into a single well-defined G-quadruplex structure. Sequences with longer poly-G strands form unspecific aggregates, whereas CGG-repeat-containing sequences exhibit a temperature-dependent equilibrium between a hairpin and a G-quadruplex structure. The applied experimental strategy is fast and provides robust readout for G-quadruplex-forming capacities of RNA oligomers.}, language = {en} } @article{MahlShoyamaKrauseetal.2020, author = {Mahl, Magnus and Shoyama, Kazutaka and Krause, Ana-Maria and Schmidt, David and W{\"u}rthner, Frank}, title = {Base-Assisted Imidization: A Synthetic Method for the Introduction of Bulky Imide Substituents to Control Packing and Optical Properties of Naphthalene and Perylene Imides}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {32}, doi = {10.1002/anie.202004965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218246}, pages = {13401 -- 13405}, year = {2020}, abstract = {We report the direct imidization of naphthalene and perylene dicarboxylic anhydrides/esters with bulky ortho,ortho-diaryl- and ortho,ortho-dialkynylaniline derivatives. This imidization method uses n-butyllithium as a strong base to increase the reactivity of bulky amine derivatives, proceeds under mild reaction conditions, requires only stoichiometric amounts of reactants and gives straightforward access to new sterically crowded rylene dicarboximides. Mechanistic investigations suggest an isoimide as intermediary product, which was converted to the corresponding imide upon addition of an aqueous base. Single-crystal X-ray diffraction analyses reveal dimeric packing motifs for monoimides, while two-side shielded bisimides crystallize in isolated molecules without close π-π-interactions. Spectroscopic investigations disclose the influence of the bulky substituents on the optical properties in the solid state.}, language = {en} } @article{AbdelhameedEltamanyHaletal.2020, author = {Abdelhameed, Reda F. A. and Eltamany, Enas E. and Hal, Dina M. and Ibrahim, Amany K. and AboulMagd, Asmaa M. and Al-Warhi, Tarfah and Youssif, Khayrya A. and Abd El-kader, Adel M. and Hassanean, Hashim A. and Fayez, Shaimaa and Bringmann, Gerhard and Ahmed, Safwat A. and Abdelmohsen, Usama Ramadan}, title = {New cytotoxic cerebrosides from the Red Sea cucumber Holothuria spinifera supported by in-silico studies}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {8}, issn = {1660-3397}, doi = {10.3390/md18080405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211089}, year = {2020}, abstract = {Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC\(_{50}\) values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC\(_{50}\) 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.}, language = {en} } @article{ScheitlLangeHoebartner2020, author = {Scheitl, Carolin P. M. and Lange, Sandra and H{\"o}bartner, Claudia}, title = {New deoxyribozymes for the native ligation of RNA}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {16}, doi = {https://doi.org/10.3390/molecules25163650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210405}, year = {2020}, abstract = {Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalysing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5'-adenylated RNA (5'-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3'-5'-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5'-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.}, language = {en} } @article{RennerStolteWuerthner2020, author = {Renner, Rebecca and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Self-Assembly of bowl-shaped naphthalimide-annulated corannulene}, series = {ChemistryOpen}, volume = {9}, journal = {ChemistryOpen}, number = {1}, doi = {10.1002/open.201900291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204396}, pages = {32-39}, year = {2020}, abstract = {The self-assembly of a bowl-shaped naphthalimide-annulated corannulene of high solubility has been studied in a variety of solvents by NMR and UV/Vis spectroscopy. Evaluation by the anti-cooperative K\(_2\)-K model revealed the formation of supramolecular dimers of outstanding thermodynamic stability. Further structural proof for the almost exclusive formation of dimers over extended aggregates is demonstrated by atomic force microscopy (AFM) and diffusion ordered spectroscopy (DOSY) measurements as well as by theoretical calculations. Thus, herein we present the first report of a supramolecular dimer of an annulated corannulene derivative in solution and discuss its extraordinarily high thermodynamic stability with association constants up to > 10\(^6\)M\(^-\) \(^1\) in methylcyclohexane, which is comparable to the association constants given for planar phthalocyanine and perylene bisimide dyes.}, language = {en} } @article{MaghamiDeyLenzetal.2020, author = {Maghami, Mohammad Ghaem and Dey, Surjendu and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Repurpsing Antiviral Drugs for Orthogonal RNA-Catalyzed Labeling}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.202001300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205552}, pages = {9335-9339}, year = {2020}, abstract = {In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2',5'-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S RNAs in total cellular RNA.}, language = {en} } @article{SchlosserCibulkaGrossetal.2020, author = {Schlosser, Julika and Cibulka, Radek and Groß, Philipp and Ihmels, Heiko and Mohrschladt, Christian J.}, title = {Visible-Light-Induced Di-\(\pi\)-Methane Rearrangement of Dibenzobarrelene Derivatives}, series = {ChemPhotoChem}, volume = {4}, journal = {ChemPhotoChem}, number = {2}, doi = {10.1002/cptc.201900221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212633}, pages = {132 -- 137}, year = {2020}, abstract = {It is demonstrated that the di-\(\pi\)-methane (DPM) rearrangement of carbonyl-substituted dibenzobarrelene (9,10-dihydro-9,10-ethenoanthracene) derivatives is induced by visible-light-induced triplet photosensitization with Ir(ppy)\(_{3}\), Ir(dFppy)\(_{3}\) or 1-butyl-7,8-dimethoxy-3-methylalloxazine as catalysts, whereas derivatives that lack carbonyl substituents are photoinert under these conditions. Notably, the products are formed almost quantitatively.}, language = {en} } @article{SchindlerGil‐SepulcreLindneretal.2020, author = {Schindler, Dorothee and Gil-Sepulcre, Marcos and Lindner, Joachim O. and Stepanenko, Vladimir and Moonshiram, Dooshaye and Llobet, Antoni and W{\"u}rthner, Frank}, title = {Efficient Electrochemical Water Oxidation by a Trinuclear Ru(bda) Macrocycle Immobilized on Multi-Walled Carbon Nanotube Electrodes}, series = {Advanced Energy Materials}, volume = {10}, journal = {Advanced Energy Materials}, number = {43}, doi = {10.1002/aenm.202002329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218381}, year = {2020}, abstract = {Catalytic water splitting is a viable process for the generation of renewable fuels. Here it is reported for the first time that a trinuclear supramolecular Ru(bda) (bda: 2,2′-bipyridine-6,6′-dicarboxylate) catalyst, anchored on multi-walled carbon nanotubes and subsequently immobilized on glassy carbon electrodes, shows outstanding performance in heterogeneous water oxidation. Activation of the catalyst on anodes by repetitive cyclic voltammetry (CV) scans results in a catalytic current density of 186 mA cm\(^{-2}\) at a potential of 1.45 V versus NHE. The activated catalyst performs water oxidation at an onset overpotential of 330 mV. The remarkably high stability of the hybrid anode is demonstrated by X-ray absorption spectroscopy and electrochemically, revealing the absence of any degradation after 1.8 million turnovers. Foot of the wave analysis of CV data of activated electrodes with different concentrations of catalyst indicates a monomolecular water nucleophilic attack mechanism with an apparent rate constant of TOFmax (turnover frequency) of 3200 s\(^{-1}\).}, language = {en} } @article{LiaqatStillerMicheletal.2020, author = {Liaqat, Anam and Stiller, Carina and Michel, Manuela and Sednev, Maksim V. and H{\"o}bartner, Claudia}, title = {N\(^6\)-Isopentenyladenosine in RNA Determines the Cleavage Site of Endonuclease Deoxyribozymes}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, edition = {Early View}, doi = {10.1002/ange.202006218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212121}, year = {2020}, abstract = {RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave posttranscriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. In this study, we report that the native tRNA modification N\(^6\)-isopentenyladenosine (i\(^6\)A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i\(^6\)A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i\(^6\)A RNA modification. Together with deoxyribozymes that are strongly inhibited by i\(^6\)A, these results highlight intricate ways of modulating the catalytic activity of DNA by posttranscriptional RNA modifications.}, language = {en} } @article{StolteHechtXieetal.2020, author = {Stolte, Matthias and Hecht, Reinhard and Xie, Zengqi and Liu, Linlin and Kaufmann, Christina and Kudzus, Astrid and Schmidt, David and W{\"u}rthner, Frank}, title = {Crystal Engineering of 1D Exciton Systems Composed of Single- and Double-Stranded Perylene Bisimide J-Aggregates}, series = {Advanced Optical Materials}, volume = {8}, journal = {Advanced Optical Materials}, number = {18}, doi = {10.1002/adom.202000926}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218221}, year = {2020}, abstract = {Single crystals of three at bay area tetraphenoxy-substituted perylene bisimide dyes are grown by vacuum sublimation. X-ray analysis reveals the self-assembly of these highly twisted perylene bisimides (PBIs) in the solid state via imide-imide hydrogen bonding into hydrogen-bonded PBI chains. The crystallographic insights disclose that the conformation and sterical congestion imparted by the phenoxy substituents can be controlled by ortho-substituents. Accordingly, whilst sterically less demanding methyl and isopropyl substituents afford double-stranded PBI chains of complementary P and M atropo-enantiomers, single hydrogen-bonded chains of homochiral PBIs are observed for the sterically more demanding ortho-phenyl substituents. Investigation of the absorption and fluorescence properties of microcrystals and thin films of these PBIs allow for an unambiguous interpretation of these exciton systems. Thus, the J-aggregates of the double-stranded crystals exhibit a much larger (negative) exciton coupling than the single-stranded one, which in contrast has the higher solid-state fluorescence quantum yield.}, language = {en} } @article{LambovHensiekPoeppleretal.2020, author = {Lambov, Martin and Hensiek, Nicola and P{\"o}ppler, Ann-Christin and Lehmann, Matthias}, title = {Columnar Liquid Crystals from Star-Shaped Conjugated Mesogens as Nano-Reservoirs for Small Acceptors}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {10}, doi = {10.1002/cplu.202000341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218014}, pages = {2219 -- 2229}, year = {2020}, abstract = {Shape-persistent conjugated mesogens with oligothiophene arms of different lengths have been synthesized. Such mesogens possess free intrinsic space between their conjugated arms. They form columnar liquid-crystalline phases, in which the void is filled by dense helical packing in the neat phase similar to an oligo(phenylene vinylene) derivative of equal size. The void can also be compensated by the inclusion of the small acceptor molecule 2,4,7-trinitrofluorenone. In solution, the acceptor interacts with the core as the largest π-surface, while in the solid material, it is incorporated between the arms and sandwiched by the star-shaped neighbours along the columnar assemblies. The TNF acceptors are not nanosegregated from the star-shaped donors, thus the liquid crystal structure converts to a nano-reservoir for TNF (endo-receptor). These host-guest arrangements are confirmed by comprehensive X-ray scattering experiments and solid-state NMR spectroscopy. This results in ordered columnar hexagonal phases at high temperatures, which change to helical columnar mesophases or to columnar soft crystals at room temperature.}, language = {en} }