@article{ScharnaglKempfSchilling2019, author = {Scharnagl, Julian and Kempf, Florian and Schilling, Klaus}, title = {Combining Distributed Consensus with Robust H-infinity-Control for Satellite Formation Flying}, series = {Electronics}, volume = {8}, journal = {Electronics}, number = {319}, doi = {10.3390/electronics8030319}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228431}, pages = {1-27}, year = {2019}, abstract = {Control methods that guarantee stability in the presence of uncertainties are mandatory in space applications. Further, distributed control approaches are beneficial in terms of scalability and to achieve common goals, especially in multi-agent setups like formation control. This paper presents a combination of robust H-infinity control and distributed control using the consensus approach by deriving a distributed consensus-based generalized plant description that can be used in H-infinity synthesis. Special focus was set towards space applications, namely satellite formation flying. The presented results show the applicability of the developed distributed robust control method to a simple, though realistic space scenario, namely a spaceborne distributed telescope. By using this approach, an arbitrary number of satellites/agents can be controlled towards an arbitrary formation geometry. Because of the combination with robust H-infinity control, the presented method satisfies the high stability and robustness demands as found e.g., in space applications.}, language = {en} } @article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Explicit Model Following Distributed Control Scheme for Formation Flying of Mini UAVs}, series = {IEEE Access}, volume = {4}, journal = {IEEE Access}, number = {397-406}, doi = {10.1109/ACCESS.2016.2517203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146061}, year = {2016}, abstract = {A centralized heterogeneous formation flight position control scheme has been formulated using an explicit model following design, based on a Linear Quadratic Regulator Proportional Integral (LQR PI) controller. The leader quadcopter is a stable reference model with desired dynamics whose output is perfectly tracked by the two wingmen quadcopters. The leader itself is controlled through the pole placement control method with desired stability characteristics, while the two followers are controlled through a robust and adaptive LQR PI control method. Selected 3-D formation geometry and static stability are maintained under a number of possible perturbations. With this control scheme, formation geometry may also be switched to any arbitrary shape during flight, provided a suitable collision avoidance mechanism is incorporated. In case of communication loss between the leader and any of the followers, the other follower provides the data, received from the leader, to the affected follower. The stability of the closed-loop system has been analyzed using singular values. The proposed approach for the tightly coupled formation flight of mini unmanned aerial vehicles has been validated with the help of extensive simulations using MATLAB/Simulink, which provided promising results.}, language = {en} }