@phdthesis{Walter2015, author = {Walter, Christof}, title = {Excitonic States and Optoelectronic Properties of Organic Semiconductors - A Quantum-Chemical Study Focusing on Merocyanines and Perylene-Based Dyes Including the Influence of the Environment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123494}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The scope of computational chemistry can be broadened by developing new methods and more efficient algorithms. However, the evaluation of the applicability of the methods for the different fields of chemistry is equally important. In this thesis systems with an unusual and complex electronic structure, such as excitonic states in organic semiconductors, a boron-containing bipolaron and the excited states of pyracene were studied and the applicability of the toolkit of computational chemistry was investigated. Concerning the organic semiconductors the focus was laid on organic solar cells, which are one of the most promising technologies with regard to satisfying the world's need for cheap and environmentally sustainable energy. This is due to the low production and material costs and the possibility of using flexible and transparent devices. However, their efficiency does still not live up to the expectations. Especially the exciton diffusion lengths seem to be significantly too short. In order to arrive at improved modules, a fundamental understanding of the elementary processes occurring in the cell on the molecular and supramolecular level is needed. Computational chemistry can provide insight by separating the different effects and providing models for predictions and prescreenings. In this thesis, the focus was laid on the description of excitonic states in merocyanines and perylene-based dyes taking the influence of the environment into account. At first, the photochemical isomerization between two configurations of 6-nitro BIPS observed experimentally was studied by first benchmarking several functionals against SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential energy surface. The geometries obtained from a relaxed scan in the ground state as well as from a scan in the excited state were used. The environment was included using different polarizable continuum models. It was shown that the choice of the model and especially the question of the state specificity of the approach is of vital importance. Using the results of the calculations, a two-dimensional potential energy surface could be constructed that could be used to explain the experimental findings. Furthermore, the importance of the excited-state isomerization as a potential deactivation channel in the exciton transport was pointed out. Then the assessment of the suitability of different merocyanines for optoelectronic applications with quantum-chemical methods was discussed. At first, the effect of the environment on the geometry, especially on the bond length alternation pattern, was investigated. It was shown that the environment changes the character of the ground-state wave function of several merocyanines qualitatively, which means that the results of gas-phase calculations are meaningless - at least when a comparison with solution or device data is desired. It was demonstrated that using a polarizable continuum model with an effective epsilon, a qualitative agreement between the calculated geometry and the geometry in the crystal structure can be obtained. Therefore, by comparing the bond length alternation in solution and in the crystal, a rough estimate of the effect of the crystal environment can be made. It was further shown that the connection between the HOMO energy and the open-circuit voltage is not as simple as it is often implied in the literature. It was discussed that it is not clear whether the HOMO of a single molecule or a \$\pi\$-stack containing several monomers should be used and if the environmental charges of the bulk phase or the interface should be included. Investigating the dependence of the HOMO energy on the stack size yielded no definitive trend. Furthermore, it was discussed that the effect due the optimization of the modules (solvent, bulk heterojunction) during the production masks any potential correlation between the HOMO energy and measured open-circuit values. Therefore, a trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately, the importance of the HOMO energy should not be overestimated. The correlation between the exciton reorganization energy and the so-called cyanine limit, which is predicted by a simple two-state model, was also discussed. By referring to the results of VB calculations, it was discussed that the correlation indeed exists and is non-negligible, although the effect is not as strong as one might have expected. In this context, a potential application of a VB/MM approach was covered briefly. The importance of the molecular reorganization energy and the device morphology was also discussed. It was concluded that the optimization of merocyanines for organic optoelectronic devices is inherently a multiparameter problem and one cannot expect to find one particular parameter, which solely controls the efficiency. The perylene-based dyes were studied with a focus on the description of a potential trapping mechanism involving an intermolecular motion in a dimer. The aim was to find methods which can be applied to larger model systems than a dimer and take the effect of the environment into account. As a test coordinate the longitudinal shift of two monomers against each other was used. At first, it was demonstrated how the character of an excited state in a dimer can be defined and how it can be extracted from a standard quantum-chemical calculation. Then several functionals were benchmarked and their applicability or failure was rationalized using the character analysis. Two recipes could be proposed, which were applied to a constraint optimization (only intermolecular degrees of freedom) in the excited states of the PBI dimer and to the description of the potential energy surfaces of ground and excited states along a longitudinal displacement in the perylene tetramer, respectively. It was further demonstrated that the semi-empirical OMx methods fail to give an accurate description of the excited-state potential energy surfaces as well as the ground-state surface along the test coordinate. This failure could be attributed to an underestimation of overlap-dependent terms. Consequently, it could be shown that the methods are applicable to large intermolecular distances, where the overlap is negligible. The results of DFT calculations with differently composed basis sets suggested that adding an additional single p-function for each atom should significantly improve the performance. QM/MM methods are ideally suited to take the effect of the environment on a a dimer model system into account. However, it was shown that standard force fields also give an incorrect description of the interaction between the monomers along the intermolecular coordinate. This failure was attributed to the isotropic atom-atom interaction in the repulsion term of the Lennard-Jones potential. This was corroborated using two simple proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AA_O was presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion. The model involves the overlap integral between the molecular densities, which are modeled as a sum of atom-centered p-type Gaussian functions. It was shown that using this force field an excellent agreement with the DFT results can be obtained when the correct parameters are used. These parameters, however, are not very generalizable, which was attributed to the simplicity of the model in its current state (using the same exponential parameter for all atoms). As a short excursion, the applicability of an MO-based overlap model was discussed. It was demonstrated that the repulsion term based on the density overlap can be used to correct the failure of the OMx methods for the ground states. This is in accord with the assumption that an underestimation of the overlap terms is responsible for the failure. It was shown that OPLS-AA_O also gives an excellent description of the longitudinal shift in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained in the TDDFT benchmark for the QM-part and OPLS-AA_O for the MM-part in conjunction with an electrostatic embedding scheme, a QM/MM description of the excited states of the PBI dimer including the effect of the environment could be obtained. In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Furthermore, an estimation of the extent of triplet admixture to the ground state due to spin-orbit coupling was given. In the second project the S1 and S2 states of pyracene were computed using SCS-CC2 and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain was given. This also involved computing the vibrational frequencies in the excited states. In both studies the results of the computations were able to rationalize and complete experimental results.}, subject = {Exziton}, language = {en} } @article{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, volume = {150}, journal = {Journal of Physical Chemistry Letters}, number = {10}, doi = {10.1063/1.5086151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178420}, pages = {104304}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} } @unpublished{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178482}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} } @phdthesis{Stehr2015, author = {Stehr, Vera}, title = {Prediction of charge and energy transport in organic crystals with quantum chemical protocols employing the hopping model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114940}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {As organic semiconductors gain more importance for application, research into their properties has become necessary. This work investigated the exciton and charge transport properties of organic semiconducting crystals. Based on a hopping approach, protocols have been developed for the calculation of Charge mobilities and singlet exciton diffusion coefficients. The protocols do not require any input from experimental data except for the x-ray crystal structure, since all needed quantities can be taken from high-level quantum chemical calculations. Hence, they allow to predict the transport properties of yet unknown compounds for given packings, which is important for a rational design of new materials. Different thermally activated hopping models based on time-dependent perturbation theory were studied for the charge and exciton transport; i. e. the spectral overlap approach, the Marcus theory, and the Levich-Jortner theory. Their derivations were presented coherently in order to emphasize the different levels of approximations and their respective prerequisites. A short reference was made to the empirical Miller-Abrahams hopping rate. Rate equation approaches to calculate the stationary charge carrier mobilities and exciton diffusion coefficients have been developed, which are based on the master equation. The rate equation approach is faster and more efficient than the frequently used Monte Carlo method and, therefore, provides the possibility to study the anisotropy of the transport parameters and their three-dimensional representation in the crystal. The Marcus theory, originally derived for outer sphere electron transfer in solvents, had already been well established for charge transport in organic solids. It was shown that this theory fits even better for excitons than for charges compared with the experiment. The Levich-Jortner theory strongly overestimates the charge carrier mobilities and the results deviate even stronger from the experiment than those obtained with the Marcus theory. The latter contains larger approximations by treating all vibrational modes classically. The spectral overlap approach in combination with the developed rate equations leads to even quantitatively very good results for exciton diffusion lengths compared to experiment. This approach and the appendant rate equations have also been adapted to charge transport. The Einstein relation, which relates the diffusion coefficient with the mobility, is important for the rate equations, which have been developed here for transport in organic crystals. It has been argued that this relation does not hold in disordered organic materials. This was analyzed within the Framework of the Gaussian disorder model and the Miller-Abrahams hopping rate.}, subject = {Exziton}, language = {en} } @phdthesis{Settels2012, author = {Settels, Volker}, title = {Quantum chemical description of ultrafast exciton self-trapping in perylene based materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69861}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionsl{\"a}ngen (LD) unter idealen Bedingungen f{\"u}r Perylen-basierte Materialien simuliert. Dies ist ein Indiz daf{\"u}r, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping"-Zust{\"a}nde. Ein tieferes Verst{\"a}ndnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zuk{\"u}nftig Materialien mit langen LD entwickeln zu k{\"o}nnen, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. F{\"u}r die Entwicklung eines solchen mechanistischen Verst{\"a}ndnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergew{\"o}hnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gr{\"u}nde f{\"u}r diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verst{\"a}ndnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich k{\"o}nnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA f{\"u}r das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es f{\"u}r viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese f{\"u}r die Aufkl{\"a}rung von Immobilisierungsmechanismen zu vernachl{\"a}ssigen sind. Eine weitere m{\"o}gliche Begr{\"u}ndung w{\"a}re in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zust{\"a}nde (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden k{\"o}nnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber f{\"u}r alle Zust{\"a}nde mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz f{\"u}r ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgr{\"a}tenartig ist. Da Polarisationseffekte auszuschließen sind, {\"u}bt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode f{\"u}r die Beschreibung von Self-Trapping nur diese Effekte ber{\"u}cksichtigen, so dass sich f{\"u}r den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialfl{\"a}chen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgef{\"u}hrt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erkl{\"a}rung f{\"u}r Self-Trapping in α-PTCDA dienten Potentialfl{\"a}chen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgr{\"a}tenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erkl{\"a}ren die unterschiedlichen LD-Werte f{\"u}r DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molek{\"u}len festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser {\"U}bergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten m{\"o}glich, weil nur hier CT-Zust{\"a}nde sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale {\"A}nderung der Aggregatstruktur erfolgt - also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in k{\"u}nftigen Materialen f{\"u}r organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden.}, subject = {Exziton}, language = {en} } @phdthesis{Pfister2011, author = {Pfister, Johannes}, title = {On the correlation between the electronic structure and transport properties of [2.2]paracyclophanes and other aromatic systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die vorliegende Arbeit pr{\"a}sentiert theoretische Untersuchungen zu Energie- und Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem „monomer transition density" (MTD) Ansatz berechnet. Aus den Kopplungen und Reorganisationsenergien werden mit der Marcus-Theorie H{\"u}pfraten berechnet. Mit Kenntnis der Kristallstrukturen werden daraus in die experimentell zug{\"a}nglichen Exzitonendiffusionsl{\"a}ngen berechnet, deren isotroper Anteil im Rahmen der Streuung der experimentell zug{\"a}nglichen Daten reproduziert werden. Auch die Anisotropie der Exzitonendiffusionsl{\"a}ngen wird qualitativ und quantitativ im Rahmen der zu erwartenden Messgenauigkeit richtig wiedergegeben. Weiterhin enth{\"a}lt Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in den zwei verschiedenen Modifikationen (α und β) von Perylen. Reorganisationsenergien sowie Diffusionskonstanten wurden f{\"u}r beide beide Kristallstrukturen und Typen des Ladungstransports berechnet. Den besten Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit elektronischen Kopplungen von gr{\"o}ßer als 100 meV. Allerdings gibt es hier keinerlei Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der b-Achse ist um zwei Gr{\"o}ßenordnungen gr{\"o}ßer als die in c-Richtung (62.7•10-6 m2/s vs. 0.4•10-6 m2/s). Der Ladungstransport wird sowohl f{\"u}r L{\"o}cher, als auch f{\"u}r Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um diese Resultate zu verifizieren wurden experimentelle Elektronenmobilit{\"a}ten in α-Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute {\"U}bereinstimmung heraus mit Fehlern von nur maximal 27\%. Wie oben gezeigt, ist es m{\"o}glich Transporteigenschaften in zwischen schwach wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier schwierig, die G{\"u}te der zu Grunde liegenden Kopplungsparameter genau anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit {\"u}ber stark wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren Absorptionseigenschaften beeinflusst. Eine Kombination der SCS-MP2 und SCS-CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die geometrischen und elektronischen Strukturen f{\"u}r Grund- und angeregte Zust{\"a}nde dieser Modellsysteme sowie deren Stammmolek{\"u}len Benzol und Phenol zu beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe Struktur{\"a}nderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den Ringen wird k{\"u}rzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine verdrillte Struktur im angeregten Zustand {\"u}bergeht. Dies hat zur Konsequenz, dass die Intensit{\"a}t des 0-0-{\"U}bergangs aufgrund der Franck-Condon Faktoren f{\"u}r p-DHPC experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch o-DHPC {\"u}berdeckt wird. Die Strukturen der Paracyclophane und deren {\"A}nderung durch elektronische {\"U}berg{\"a}nge werden in dieser Arbeit durch elektrostatische Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erkl{\"a}rt. Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV betr{\"a}gt. Hierbei ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 durchf{\"u}hren muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen wurde eine Interpretation der experimentellen [1+1]REMPI Spektren m{\"o}glich. Bandenprogressionen f{\"u}r die Schwingungen der Verschiebung, der Verdrillung und einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute {\"U}bereinstimmung zum Experiment. Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien verbunden ist, kann das hier gewonnene Verst{\"a}ndnis der spektroskopischen Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen den π-Systemen vorherzusagen.}, subject = {Ladungstransport}, language = {en} } @phdthesis{Mahlmeister2023, author = {Mahlmeister, Bernhard}, title = {Twisted Rylene Bisimides for Organic Solar Cells and Strong Chiroptical Response in the Near Infrared}, doi = {10.25972/OPUS-34610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The chirality of the interlocked bay-arylated perylene motif is investigated upon its material prospect and the enhancement of its chiroptical response to the NIR spectral region. A considerable molecular library of inherently chiral perylene bisimides (PBIs) was utilized as acceptors in organic solar cells to provide decent device performances and insights into the structure-property relationship of PBI materials within a polymer blend. For the first time in the family of core-twisted PBIs, the effects of enantiopurity on the device performance was thoroughly investigated. The extraordinary structural sensitivity of CD spectroscopy served as crucial analytical tool to bridge the highly challenging gap between molecular properties and device analytics by proving the excitonic chirality of a helical PBI dimer. The chirality of this perylene motif could be further enhanced on a molecular level by both the expansion and the enhanced twisting of the π-scaffold to achieve a desirable strong chiroptical NIR response introducing a new family of twisted QBI-based nanoribbons. These achievements could be substantially further developed by expanding this molecular concept to a supramolecular level. The geometrically demanding supramolecular arrangement necessary for the efficient excitonic coupling was carefully encoded into the molecular design. Accordingly, the QBIs could form the first J-type aggregate constituting a fourfold-stranded superhelix of a rylene bisimide with strong excitonic chirality. Therefore, this thesis has highlighted the mutual corroboration of experimental and theoretical data from the molecular to the supramolecular level. It has demonstrated that for rylene bisimide dyes, the excitonic contribution to the overall chiroptical response can be designed and rationalized. This can help to pave the way for new organic functional materials to be used for chiral sensing or chiral organic light-emitting devices.}, subject = {Molek{\"u}l}, language = {en} } @phdthesis{Luettig2023, author = {L{\"u}ttig, Julian Konstantin}, title = {Coherent Higher-Order Spectroscopy: Investigating Multi-Exciton Interaction}, doi = {10.25972/OPUS-29318}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293182}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The goal of this thesis was the development and application of higher-order spectroscopic techniques. In contrast to ordinary pump-probe (PP) and two-dimensional (2D) spectroscopy, higher-order coherently detected spectroscopic methods measure a polarization that has an order of nonlinearity higher than three. The key idea of the techniques in this thesis is to isolate the higher-order signals from the lower-order signals either by their excitation frequency or by their excitation intensity dependence. Due to the increased number of interactions in higher-order spectroscopy, highly excited states can be probed. For excitonic systems such as aggregates and polymers, the fifth-order signal allows one to directly measure exciton-exciton annihilation (EEA). In polymers and aggregates, the exciton transport is not connected to a change of the absorption and can therefore not be investigated with conventional third-order techniques. In contrast, EEA can be used as a probe to study exciton diffusion in these isonergetic systems. As a part of this thesis, anisotropy in fifth-order 2D spectroscopy was investigated and was used to study geometric properties in polymers. In 2D spectroscopy, the multi-quantum signals are separated from each other by their spectral position along the excitation axis. This concept can be extended systematically to higher signals. Another approach to isolate multi-quantum signals in PP spectroscopy utilizes the excitation intensity. The PP signal is measured at specific excitation intensities and linear combinations of these measurements result in different signal contributions. However, these signals do not correspond to clean nonlinear signals because the higher-order signals contaminate the lower-order multi-quantum signals. In this thesis, a correction protocol was derived that uses the isolated multiquantum signals, both from 2D spectroscopy and from PP spectroscopy, to remove the contamination of higher-order signals resulting in clean nonlinear signals. Using the correction on the third-order signal allows one to obtain annihilation-free signals at high excitation intensities, i.e., with high signal-to-noise ratio. Isolation and correction in PP and 2D spectroscopy were directly compared by measuring the clean third-order signals of squaraine oligomers at high excitation intensities. Furthermore, higher-order PP spectroscopy was used to isolate up to the 13th nonlinear order of squaraine polymers. The demonstrated spectroscopic techniques represent general procedures to isolate clean signals in terms of perturbation theory. The technique of higher-order PP spectroscopy needs only small modifications of ordinary PP setups which opens the field of higher-order spectroscopy to the broad scientific community. The technique to obtain clean nonlinear signals allows one to systematically increase the number of interacting (quasi)particles in a system and to characterize their interaction energies and dynamics.}, subject = {Coherent Multidimensional Spectroscopy}, language = {en} } @phdthesis{Liu2011, author = {Liu, Wenlan}, title = {Exciton Coupling in Valence and Core Excited Aggregates of pi-Conjugated Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56169}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Rahmen dieser Arbeit werden theoretische Modelle zur Beschreibung von Valenz- und Rumpf-angeregten elektronischen Zust{\"a}nden diskutiert. Im Fall der Valenz-Anregungen wurden time-dependend Hartree-Fock (TD-HF) und timedependent Dichtefunktionaltheorie (TD-DFT)Methoden mit verschiedenen Funktionalen f{\"u}r ein Perylenbisimid (PBI) System validiert. Eine einfache Analyse der Charakt{\"a}re der angeregten Zust{\"a}nde wurde vorgeschlagen, die auf den berechneten {\"U}bergangsdipolmomenten basiert. Dieser Ansatz ist allerdings auf Zust{\"a}nde beschr{\"a}nkt, die ein signifikantes {\"U}bergangsdipolmoment aufweisen. Deshalb wurde eine allgemeinere und fundiertere Methode entwickelt, die auf einer Analyse der berechneten CISWellenfunktion basiert. Dar{\"u}berhinaus wurde ein literaturbekannter Model-Hamiltonoperator Ansatz von einem lokalisierten Molek{\"u}lorbitalbild (MO) abgeleitet, das aus der generelleren Analyse-Methode resultiert. Auf diesem Weg ist ein Zugang zu diabatischen angeregten Zust{\"a}nden und korrespondierenden Kopplungsparametern auf der Basis von ab initio Rechnungen gegeben. F{\"u}r rumpfangeregte elektronische Zust{\"a}nde wurden drei Methoden f{\"u}r C 1s-angeregte und ionisierte Zust{\"a}nde verschiedener kleiner Molek{\"u}le validiert. Dar{\"u}berhinaus wurde die Basissatzabh{\"a}ngigkeit dieser Zust{\"a}nde untersucht. Anhand der Resultate wurde die frozen core N{\"a}herung ausgew{\"a}hlt um rumpfangeregte Zust{\"a}nde von Naphthalintetracarbons{\"a}uredianhydrid (NTCDA) zu berechnen. Um experimentelle Ergebnisse zu erkl{\"a}ren, wurde ein Algorithmus entwicklet, der die Exzitonenkopplungsparameter im Fall von nicht-orthogonalen MOs berechnet.}, subject = {Exziton}, language = {en} } @phdthesis{Liess2017, author = {Liess, Andreas}, title = {Structure-Property Relationships of Merocyanine Dyes in the Solid State: Charge Transport and Exciton Coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The present thesis demonstrates the importance of the solid state packing of dipolar merocyanine dyes with regard to charge transport and exciton coupling. Due to the charge transport theory for disordered materials, it is expected that high ground state dipole moments in amorphous thin films lead to low mobility values due to a broadening of the density of states. However, due to their inherent dipolarity, merocyanine dyes usually align in antiparallel dimers in an ordered fashion. The examination of twenty different molecules with ground state dipole moments up to 15.0 D shows that by a high dipolarity and well-defined sterics, the molecules pack in a highly regular two-dimensional brickwork-type structure, which is beneficial for hole transport. Utilization of these molecules for organic thin-film transistors (OTFTs) leads to hole mobility values up to 0.21 cm²/Vs. By fabrication of single crystal field-effect transistors (SCFETs) for the derivative showing the highest mobility values in OTFTs, even hole mobilities up to 2.34 cm²/Vs are achieved. Hence, merocyanine based transistors show hole mobility values comparable to those of conventional p-type organic semiconductors and therefore high ground state dipole moments are not necessarily disadvantageous regarding high mobility applications. By examination of a different series of ten merocyanine dyes with the same chromophore backbone but different donor substituents, it is demonstrated that the size of the donor has a significant influence on the optical properties of thin films. For small and rigid donor substituents, a hypsochromic shift of the absorption compared to the monomer absorption in solution is observed due to the card stack like packing of the molecules in the solid state. By utilization of sterical demanding or flexible donor substituents, a zig-zag type packing is observed, leading to a bathochromical shift of the absorption. These packing motifs and spectral shifts with an offset of 0.93 eV of the H- and J-bands comply with the archetype examples of H- and J-aggregates from Kasha's exciton theory.}, subject = {Exziton}, language = {en} } @phdthesis{Kirchner2019, author = {Kirchner, Eva}, title = {Discrete Supramolecular Stacks by Self-Assembly and Folding of Bis(merocyanine) Dyes}, doi = {10.25972/OPUS-15941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present thesis describes the development of a strategy to create discrete finite-sized supramolecular stacks of merocyanine dyes. Thus, bichromophoric stacks of two identical or different chromophores could be realized by folding of bis(merocyanine) dyes and their optical properties were discussed in terms of exciton theory. Quantum chemical calculations revealed strong exciton coupling between the chromophores within the homo- and hetero-π-stacks and the increase of the J-band of the hetero-dimers with increasing energy difference between the excited states of the chromophores could be attributed not only to the different magnitudes of transition dipole moments of the chromophores but also to the increased localization of the excitation in the respective exciton state. Furthermore, careful selection of the length of the spacer unit that defines the interplanar distance between the tethered chromophores directed the self-assembly of the respective bis(merocyanines) into dimers, trimers and tetramers comprising large, structurally precise π-stacks of four, six or eight merocyanine chromophores. It could be demonstrated that the structure of such large supramolecular architectures can be adequately elucidated by commonly accessible analysis tools, in particular NMR techniques in combination with UV/vis measurements and mass spectrometry. Supported by TDDFT calculations, the absorption spectra of the herein investigated aggregates could be explained and a relationship between the absorption properties and the number of stacking chromophores could be established based on exciton theory.}, subject = {Merocyanine}, language = {en} } @phdthesis{Hammer2021, author = {Hammer, Sebastian Tobias}, title = {Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors}, doi = {10.25972/OPUS-24401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{Dietzsch2022, author = {Dietzsch, Julia}, title = {Nucleic acid-mediated fluorescence activation and chromophore assembly}, doi = {10.25972/OPUS-25976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259761}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nucleic acids are not only one of the most important classes of macromolecules in biochemistry but also a promising platform for the defined arrangement of chromophores. Thanks to their precise organization by directional polar and hydrophobic interactions, oligonucleotides can be exploited as suitable templates for multichromophore assemblies with predictable properties. To expand the toolbox of emissive, base pairing nucleobase analogs several barbituric acid merocyanine (BAM) chromophores with tunable spectroscopic properties were synthesized and incorporated into RNA, DNA and glycol nucleic acid (GNA) oligonucleotides. A multitude of duplexes containing up to ten BAM chromophores was obtained and analysis by spectroscopic methods revealed the presence of dipolarly coupled merocyanine aggregates with properties strongly dependent on the chromophore orientation toward each other and the backbone conformation. These characteristics were exploited for various applications such as FRET pair formation and polymerase chain reaction (PCR) experiments. The observed formation of higher-order aggregates implies future applications of these new oligonucleotide-chromophore systems as light-harvesting DNA nanomaterials. Besides oligonucleotide templated covalent assembly of chromophores also non-covalent nucleic acid-chromophore complexes are a broad field of research. Among these, fluorogenic RNA aptamers are of special interest with the most versatile ones based on derivatives of the GFP chromophore hydroxybenzylidene imidazolone (HBI). Therefore, new HBI-derived chromophores with an expanded conjugated system and an additional exocyclic amino group for an enhanced binding affinity were synthesized and analyzed in complex with the Chili aptamer. Among these, structurally new fluorogenes with strong fluorescence activation upon binding to Chili were identified which are promising for further derivatization and application as color-switching sensor devices for example.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Bieker2015, author = {Bieker, Steffen}, title = {Time and Spatially Resolved Photoluminescence Spectroscopy of Hot Excitons in Gallium Arsenide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The present thesis investigates the impact of hot exciton effects on the low-temperature time and spatially resolved photoluminescence (PL) response of free excitons in high-purity gallium arsenide (GaAs). The work at hand extends available studies of hot carrier effects, which in bulk GaAs have up to now focused on hot electron populations. In crucial distinction from previous work, we extensively study the free exciton second LO-phonon replica. The benefit of this approach is twofold. First, the two LO phonon-assisted radiative recombination allows to circumvent the inherent interpretation ambiguities of the previously investigated free exciton zero-phonon line. Second, the recombination line shape of the second LO-phonon replica provides direct experimental access to the exciton temperature, thereby enabling the quantitative assessment of hot exciton effects. In the first part of the thesis, we address the influence of transient cooling on the time evolution of an initially hot photocarrier ensemble. To this end, we investigate time-resolved photoluminescence (TRPL) signals detected on the free exciton second LO-phonon replica. Settling a long-standing question, we show by comparison with TRPL transients of the free exciton zero-phonon line that the slow free exciton photoluminescence rise following pulsed optical excitation is dominated by the slow buildup of a free exciton population and not by the relaxation of large K-vector excitons to the Brillouin zone center. To establish a quantitative picture of the delayed photoluminescence onset, we determine the cooling dynamics of the initially hot photocarrier cloud from a time-resolved line shape analysis of the second LO-phonon replica. We demonstrate that the Saha equation, which fundamentally describes the thermodynamic population balance between free excitons and the uncorrelated electron-hole plasma, directly translates the experimentally derived cooling curves into the time-dependent conversion of unbound electron-hole pairs into free excitons. In the second part of the thesis, we establish the impact of hot exciton effects on low-temperature spatially resolved photoluminescence (SRPL) studies. Such experiments are widely used to investigate charge carrier and free exciton diffusion in semiconductors and semiconductor nanostructures. By SRPL spectroscopy of the second LO-phonon replica, we show that above-band gap focused laser excitation inevitably causes local heating in the carrier system, which crucially affects the diffusive expansion of a locally excited exciton packet. Undistorted free exciton diffusion profiles, which are correctly described by the commonly used formulation of the photocarrier diffusion equation, are only observed in the absence of spatial temperature gradients. At low sample temperatures, the reliable determination of free exciton diffusion coefficients from both continuous-wave and time-resolved SRPL spectroscopy requires strictly resonant optical excitation. Using resonant laser excitation, we observe the dimensional crossover of free exciton diffusion in etched wire structures of a thin, effectively two-dimensional GaAs epilayer. When the lateral wire width falls below the diffusion length, the sample geometry becomes effectively one-dimensional. The exciton diffusion profile along the wire stripe is then consistently reproduced by the steady-state solution to the one-dimensional diffusion equation. Finally, we demonstrate the formation of macroscopic free and bound exciton photoluminescence rings in bulk GaAs around a focused laser excitation spot. Both ring formation effects are due to pump-induced local heating in the exciton system. For a quantitative assessment of the mechanism underlying the free exciton ring formation, we directly determine the exciton temperature gradient from a spatially resolved line shape analysis of the free exciton second LO-phonon replica. We demonstrate that a pump-induced hot spot locally modifies the thermodynamic population balance between free excitons and unbound electron-hole pairs described by the Saha equation, which naturally explains the emergence of macroscopic free exciton ring structures. In summary, we demonstrate that quantitative consideration of hot exciton effects provides a coherent picture both of the time-domain free exciton luminescence kinetics and of the distinct spatially resolved photoluminescence patterns developing under the influence of spatial photocarrier diffusion.}, subject = {Exziton}, language = {en} } @phdthesis{Bellinger2016, author = {Bellinger, Daniel}, title = {Implementation of new reaction pathway determining methods and study of solvent effects on the excited state nature of perylene based dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Two thematic complexes were addressed within this work. One part is related to improvements and new implementations into the CAST program package. Thereby the main focus laid on the delivery of a tool which can be used to characterize complex reactions and their mechanisms. But also within the new force field (FF) method (SAPT-FF) within the CAST program, several improvements were made. The second topic is related to the description of dye molecules and their spectral properties. The main focus within these studies was set on the influence of the environment on these properties. In the first topic improvements of the local acting NEB (nudged elastic band) methods were included and the number of available methods was extended. The initial pathway generation was improved by implementing the IDPP (image dependent pair potential) method and a new method was implemented for describing temperature dependent pathways. Additionally, improvements have been made to the optimization routines (global NEB). As a second part the Pathopt (PO) method was considerably improved. In the beginning of the work the original PO idea was used. In this approach one starts with a global optimization on one n-1 dimensional hyperplane which divides the reaction into two sub-areas for obtaining guesses of TSs (transition states). These found TS guesses were used to optimize to the "true" TS. Starting from the optimized ones a relaxation to the next connected minima is done. This idea has been automatically implemented and extended to several number of hyperplanes. In this manner a group of pathsegments is obtained which needs to be connected, but within this work it was realized that such a procedure might be not very efficient. Therefore, a new strategy was implemented which is founded on the same constrained global optimization scheme (MCM) for which the user defines the number of hyperplanes generated. The number of such generated hyperplanes should be large enough 134 to describe the space between the concerning reactants in a sufficient way. The found minima are directly used to built up the reaction pathway. For this purpose a RMSD (root mean square deviation) criterion is used to walk along ways of minimal change from one to another hyperplane. To prove the implementations various test calculations were carried out and extensions included to prove the capabilities of the new strategy. Related to these tests a new strategy for applying the move steps in MCM (Monte Carlo with minimization) was realized which is also related to the question of the coordinates representation. We were able to show that the hopping steps in MCM can be improved by applying Cartesian steps in combination of random dihedral moves with respect to the constraint. In this way it was possible to show that a large variety of systems can be treated. An additional chapter shows the improvements of the SAPT-FF implementation and related test cases. It was possible to treat benzene dimer and cluster systems of different sizes consistently also in accordance with high level ab initio based approaches. Furthermore, we showed that the SAPT-FF with the right parameters outperforms the standard AMOEBA implementation which is the basis of the SAPT-FF implementation. In the last three chapters deal with the description of perlyene-based dyes. In the first smaller chapter ground state chemistry description of macro cycles of PBI (perylene bisimide) derivatives were investigated. Therefore, AFM (atomic force microscopy) based pictures were explained within our study. The methods to explain aggregation behavior in dependency of the ring size were MD simulations and configuration studies. The last two chapters deal with opto-electronic or photo-physical properties of PBI and PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). In detail, we investigated the role of the environment and the aggregate or crystal surrounding by applying different models. In that way implicit and explicit solvation models, the size of aggregates and vibration motions were used. In the case of PBI the recent work is found on preliminary studies related to my bachelor thesis and extends it. It was shown that the direct influence of a polarizable surrounding, as well as explicit inclusion of solvent molecules on the overall description of the excitations and nature of the excited states is weaker as one might expect. However the inclusion of intra-molecular degrees of freedom showed a stronger influence on the state characteristics and can induce a change of the order of states within the dimer picture. For the PTCDA molecule the main focus was set on the description of the absorption spectrum of crystalline thin films. Related to this older works exist which already gave a description and assignment of the absorption band, but are based on different approaches compared to the one used in this work. We used the supermolecule ansatz, whereas the environment and different aggregate sizes were investigated. Within the dimer based approach we were able to show that using continuum solvation (IEFPCM/COSMO) based description for the environment the relative order of states remains unchanged. Similar to the PBI calculations the influence of the vibrational motions /distortions is larger. The simulation of the crystal environment by using QM/MM (quantum mechanics/molecular mechanics) approaches delivered that an asymmetric charge distribution might induce a localization of the excitation and a stronger mixing of states. For obtaining further insights we go beyond the dimer picture and aggregates of different sizes were used, whereas the simulations up to the octadecamer mono- and even dual-layer stack were carried out. Within these calculations it was shown that the H-coupling is dominating over a weaker J-coupling between different stacks. Additionally the calculations based on DFT (density functional theory) and semi-empirics showed that the lowest state in terms of energy are mostly of Frenkel type, whereas the higher lying states are CT ones which mix with embedded Frenkel type states. The first band of the absorption spectrum was explained by inclusion of vibrational motions within the stacks which induce an intensity gain of the first excited state. This intensity was not explainable by using the undistorted stacks. Also relaxations at the crystal surface might play a role, but are experimentally not explainable.}, subject = {Globale Optimierung}, language = {en} } @phdthesis{Auerhammer2018, author = {Auerhammer, Nina A.}, title = {Energy Transfer and Excitonic Interactions in Conjugated Chromophore Arrangements of Bodipys and Pyrenes and Squaraines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166721}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other. The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred. In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification. The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads. The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations. In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule.}, subject = {Chromophor}, language = {en} }