@article{ChenYuZhangetal.2011, author = {Chen, Nanhai G. and Yu, Yong A. and Zhang, Qian and Szalay, Aladar A.}, title = {Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice}, series = {Journal of Translational Medicine}, volume = {9}, journal = {Journal of Translational Medicine}, number = {164}, doi = {10.1186/1479-5876-9-164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142268}, pages = {1-11}, year = {2011}, abstract = {Background: We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, beta-galactosidase, and beta-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV 1h68. This strain shows tumor specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods: A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV 1h68 with short non coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results: we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions: These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals.}, language = {en} } @article{YinBrocherFischeretal.2011, author = {Yin, Jun and Brocher, Jan and Fischer, Utz and Winkler, Christoph}, title = {Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa}, series = {Molecular neurodegeneration}, volume = {6}, journal = {Molecular neurodegeneration}, number = {56}, doi = {10.1186/1750-1326-6-56}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141090}, pages = {1-17}, year = {2011}, abstract = {Background: Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects. Results: We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in PRPF31, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time in vivo that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors. Conclusion: Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model in vivo, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects.}, language = {en} } @article{RegnLaggerbauerJentzschetal.2016, author = {Regn, Michael and Laggerbauer, Bernhard and Jentzsch, Claudia and Ramanujam, Deepak and Ahles, Andrea and Sichler, Sonja and Calzada-Wack, Julia and Koenen, Rory R. and Braun, Attila and Nieswandt, Bernhard and Engelhardt, Stefan}, title = {Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium}, series = {Journal of Molecular and Cellular Cardiology}, volume = {99}, journal = {Journal of Molecular and Cellular Cardiology}, doi = {10.1016/j.yjmcc.2016.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187039}, pages = {57-64}, year = {2016}, abstract = {A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.}, language = {en} } @article{SailerWiedemannStraussetal.2019, author = {Sailer, Clara Odilia and Wiedemann, Sophia Julia and Strauss, Konrad and Schnyder, Ingeborg and Fenske, Wiebke Kristin and Christ-Crain, Mirjam}, title = {Markers of systemic inflammation in response to osmotic stimulus in healthy volunteers}, series = {Endocrine Connections}, volume = {8}, journal = {Endocrine Connections}, number = {9}, doi = {10.1530/EC-19-0280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227204}, pages = {1282-1287}, year = {2019}, abstract = {Osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters, such as interle ukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha), increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium >= 150 mmol/L) by hypertonic saline infusion. Copeptin - a marker indicating vasopressin activity - serum sodium and osmolality, plasma IL-8 and TNF-alpha were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/L (136, 147) to 151 mmol/L (145, 154) (P < 0.01), serum osmolality increased from 295 mmol/L (281, 306) to 315 mmol/L (304, 325) (P < 0.01). Median (range) copeptin increased from 4.3 pg/L (1.1, 21.4) to 28.8 pg/L (19.9, 43.4) (P < 0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/mL (0.37, 1.6) to 0.7 pg/mL (0.4, 1.9) (P < 0.09) and TNF-alpha levels decreased from 0.53 pg/mL (0.11, 1.1) to 0.45 pg/mL (0.1 2, 0.97) (P < 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. In this study, osmotic stimulus does not increase circulating markers of systemic inflammation.}, subject = {Hyperosmotic Stress}, language = {en} }