@phdthesis{Schmitt2013, author = {Schmitt, Peter}, title = {MR imaging of tumors: Approaches for functional and fast morphological characterization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of "synthetic" MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Ye2013, author = {Ye, Yuxiang}, title = {Molecular and Cellular Magnetic Resonance Imaging of Myocardial Infarct Healing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Myokardinfarkte (MI) sind eine der h{\"a}ufigsten Todesursachen weltweit. Eine rechtzeitige Wiederherstellung des koronaren Blutflusses im isch{\"a}mischen Myokard reduziert signifikant die Sterblichkeitsrate akuter Infarkte und vermindert das ventrikul{\"a}re Remodeling. {\"U}berlebende MI-Patienten entwickeln jedoch h{\"a}ufig eine Herzinsuffizienz, die mit einer reduzierten Lebensqualit{\"a}t, hohen Sterblichkeitsrate (10\% j{\"a}hrlich), sowie hohen Kosten f{\"u}r das Gesundheitssystem einhergeht. Die Entwicklung der Herzinsuffizienz nach einem MI ist auf den hohen Verlust kontraktiler Kardiomyozyten, w{\"a}hrend der Isch{\"a}mie-Reperfusion zur{\"u}ckzuf{\"u}hren. Anschließende komplexe strukturelle und funktionelle Ver{\"a}nderungen resultieren aus Modifikationen des infarzierten und nicht infarzierten Myokards auf molekularer und zellul{\"a}rer Ebene. Die verbesserte {\"U}berlebensrate von Patienten mit akutem MI und das Fehlen effizienter Therapien, die die Entwicklung und das Fortschreiten des ventrikul{\"a}ren Remodelings verhindern, f{\"u}hren zu einer hohen Pr{\"a}valenz der Herzinsuffizienz. Die kardiale Magnetresonanztomographie (MRT) ist eine wichtige Methode zur Diagnose und Beurteilung des Myokardinfarktes. Mit dem technologischen Fortschritt wurden die Grenzen der MRT erweitert, so dass es heute m{\"o}glich ist, auch molekulare und zellul{\"a}re Ereignisse in vivo und nicht-invasiv zu untersuchen. In Kombination mit kardialer Morphologie und Funktion k{\"o}nnte die Visualisierung essentieller molekularer und zellul{\"a}rer Marker in vivo weitreichende Einblicke in den Heilungsprozess infarzierter Herzen liefern, was zu neuen Erkenntnissen f{\"u}r ein besseres Verst{\"a}ndnis und bessere Therapien des akuten MI f{\"u}hren k{\"o}nnte. In dieser Arbeit wurden Methoden f{\"u}r die molekulare und zellul{\"a}re kardiale MRT-Bildgebung der Inflammation und des Kalziumstroms im Heilungsprozess des akuten Myokardinfarktes in vivo in einem Rattenmodel mit klinischer Relevanz etabliert.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Joseph2013, author = {Joseph, Arun Antony}, title = {Real-time MRI of Moving Spins Using Undersampled Radial FLASH}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI.}, subject = {Kernspintomografie}, language = {en} }