@phdthesis{Daumer2005, author = {Daumer, Volker}, title = {Phase coherent transport phenomena in HgTe quantum well structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Although spintronics has aroused increasing interest, much fundamental research has to be done. One important issue is the control over the electronic spin. Therefore, spin and phase coherent transport are very important phenomena. This thesis describes experiments with mercury based quantum well structures. This narrow gap material provides a very good template to study spin related effects. It exhibits large Zeeman spin splitting and Rashba spin-orbit splitting. The latter is at least four to five times larger than in III-V semiconductors. Initially a short review on the transport theory was presented. The main focus as on quantisation effects that are important to understand the related experiments. Thus, Shubnikov-de Haas and the quantum Hall effect have been analysed. Due to the first fabrication of nanostructures on Hg-based quantum well samples, the observation of ballistic transport effects could be expected. Hence, the Landauer-B¨uttiker theory has been introduced which gives the theoretical background to understand such effects. With respect to the main topic of this thesis, phase coherence has been introduced in detail. Experiments, where coherence effects could be observed, have been explained theoretically. Here, possible measurement setups have been discussed, e.g., a ring shaped structure to investigate the Aharonov-Bohm and related effects. Due to the fact, that all experiments, described in this thesis, were performed on Hg-based samples, the exceptional position of such samples among the \&\#147;classical\&\#148; semiconductors has been clarified. Hg1-xMnx Te quantum wells are type-III QWs in contrast to the type-I QWs formed by e.g., GaAs/AlGaAs heterostructures. With a well width of more than 6 nm and a manganese content of less than 7\% they exhibit an inverted band alignment. Band structure calculations based on self consistent Hartree calculations have been presented. The common description of a diluted magnetic semiconductor with the Brillouin function has been introduced and the experiments to obtain the empiric parameters T0 and S0 have been presented. Rashba spin-orbit splitting and giant Zeeman splitting have been explained theoretically and the magnetic ordering of a spin glass as well as the relevant interactions therein have been discussed. The next chapter describes the first realisation of nanostructures on Hg-based heterostructures. Several material specific problems have been solved, but the unique features of this material system mentioned above justify the effort. Interesting new insight could be found and will be found with these structures. Onto a series of QW samples, cross-shaped structures with several lead widths have been patterned. With the non-local resistance measurement setup, evidence for quasiballistic transport was demonstrated in cross-shaped structures with lead widths down to 0.45 mm. The non-local bend resistance and a regime of rebound trajectories as well as the anomalous Hall effect could be identified. Monte-Carlo simulations of the classical electron trajectories have been performed. A good agreement with the experimental data has been achieved by taking a random scattering process into account. Encouraged by this success the technology has been improved and ring-shaped structures with radii down to 1 mm have been fabricated. Low temperature (below 100 mK), four terminal resistance measurements exhibit clear Aharonov-Bohm oscillations. The period of the oscillations agrees very well with a calculation that takes only the sample geometry into account. One goal using such a structure is the experimental prove of the spin-orbit Berry phase. Therefore an additional Shottky gate on top of the ring was needed. With this structure evidence for the Aharonov-Casher effect was observed. Here, a perpendicular applied electric field causes analogous oscillations as does the magnetic field in the AB effect. A subsequent change in the Rashba SO splitting due to several applied gate voltages while measuring the AB effect should reveal the SO Berry phase. Although initially evidence of a phase change was detected, a clear proof for the direct measurement of the SO Berry phase could not be found. In the future, with an advanced sample structure, e.g., with an additional Hall bar next to the ring, which permits a synchronous measurement of the Rashba splitting, it might be possible to measure the SO Berry phase directly. In manganese doped HgTe QWs two different effects simultaneously cause spin splitting: the giant Zeeman and the Rashba effect. By analysing the Shubnikovde Haas oscillations and the node positions of their beating pattern, it has been possible to separate these two effects. Whereas the Rashba effect can be identified by its dependence on the structure inversion asymmetry, varied by the applied gate voltage, the giant Zeeman splitting is extracted from its strong temperature dependence, because Rashba splitting is temperature independent. The analysis revealed, that the Rashba splitting is larger than or comparable to the giant Zeeman splitting even at moderately high magnetic fields. In an extraordinary HgMnTe QW sample, that exhibits the n= 1 quantum Hall plateau from less than 1 T up to 28 T, the anomalous Hall effect could be excluded. Intense studies on the temperature dependence of the QHE as well as band structure calculations have revealed this extraordinary behaviour to be an ordinary band structure effect of this system. In a series of mesoscopic structures on nonmagnetic and magnetic QWs, an investigation of the universal conductance uctuations have been carried out. In the}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Eckl2004, author = {Eckl, Thomas}, title = {Phenomenological phase-fluctuation model for the underdoped cuprates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12115}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In this thesis, a phenomenological phase-fluctuation model for the pseudogap regime of the underdoped cuprates was discussed. The key idea of the phase-fluctuation scenario in the high-T_c superconductors is the notion that the pseudogap observed in a wide variety of experiments arises from phase fluctuations of the superconducting gap. In this scenario, below a mean-field temperature scale T_c^{MF}, a d_{x^2-y^2}-wave gap amplitude is assumed to develop. However, the superconducting transition is suppressed to a considerably lower transition temperature T_c by phase fluctuations. In the intermediate temperature regime between T_c^{MF} and T_c, phase fluctuations of the superconducting order parameter give rise to the pseudogap phenomena. The phenomenological phase-fluctuation model discussed in this thesis consists of a two-dimensional BCS-like Hamiltonian where the phase of the pairing-amplitude is free to fluctuate. The fluctuations of the phase were treated by a Monte Carlo simulation of a classical XY model. First, the density of states was calculated. The quasiparticle tunneling conductance (dI/dV) obtained from our phenomenological phase fluctuation model was able to reproduce characteristic and salient features of recent scanning-tunneling studies of Bi2212 and Bi2201 suggesting that the pseudogap behavior observed in these experiments arises from phase fluctuations of the d_{x^2-y^2}-wave pairing gap. In calculating the single-particle spectral weight, we were further able to show how phase fluctuations influence the experimentally observed quasiparticle spectra in detail. In particular the disappearance of the BCS-Bogoliubov quasiparticle band at T_c and the change from a more V-like superconducting gap to a rather U-like pseudogap above T_c can be explained in a consistent way by assuming that the low-energy pseudogap in the underdoped cuprates is due to phase fluctuations of a local d_{x^2-y^2}-wave pairing gap with fixed magnitude. Furthermore, phase fluctuations can explain why the pseudogap starts closing from the nodal points, whereas it rather fills in along the anti-nodal directions and they can also account for the characteristic temperature dependence of the superconducting (pi,0)-photoemission-peak. Next, we have shown that the "violation" of the low-frequency optical sum rule recently observed in the SC state of underdoped Bi2212, which is associated with a reduction of kinetic energy, can be related to the role of phase fluctuations. The decrease in kinetic energy is due to the sharpening of the quasiparticle peaks close to the superconducting transition at T_c == T_{KT}, where the phase correlation length xi diverges. A detailed analysis of the temperature and frequency dependence of the optical conductivity sigma(omega)=sigma_1(omega)+i sigma_2(omega) revealed a superconducting scaling of sigma_2(omega), which starts already above T_c, exactly as observed in high-frequency microwave conductivity experiments on Bi2212. On the other hand, our model was only able to account for the characteristic peak, which is observed in sigma_1(omega) close to the superconducting transition, after the inclusion of an additional marginal-Fermi-liquid scattering-rate in the optical conductivity formula. Finally, we calculated the static uniform diamagnetic susceptibility. It turned out that the precursor effects of the fluctuating diamagnetism above T_c are very small and limited to temperatures close to T_c in a phase-fluctuation scenario of the pseudogap. Instead, the temperature dependence of the uniform static magnetic susceptibility is dominated by the Pauli spin susceptibility, which displayed a very characteristic temperature dependence, independent of the details of the gap function used in our model. This temperature dependence is qualitatively very similar to the experimentally observed change of the Knight-shift as a function of temperature in underdoped Bi2212.}, subject = {Hochtemperatursupraleiter}, language = {en} }