@phdthesis{Mueller2022, author = {M{\"u}ller, Stefan}, title = {Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy}, doi = {10.25972/OPUS-24411}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244113}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis describes novel concepts for the measurement of the static and dynamic properties of the electronic structure of molecules and nanocrystals in the liquid phase by means of coherent fluorescence-detected spectroscopy in two and three frequency dimensions. These concepts are based on the systematic variation ("phase cycling") of a sequence of multiple time-delayed femtosecond excitation pulses in order to decode a multitude of novel nonlinear signals from the resulting phase-dependent fluorescence signal. These signals represent any permutation of correlations between zero-, one-, two-, and three-quantum coherences. To this end, two new phase-cycling schemes have been developed which can simultaneously resolve and discriminate several nonlinear signals of sixth order, including those of the fourth order of nonlinearity. By means of the sixth-order signals recorded in this work, static properties of highly excited electronic states in molecules such as their energies, transition dipole moments, and relative displacement of electronic potential surfaces, as well as dynamic properties in terms of their relaxation kinetics, can be ascertained. Furthermore, it was shown that these signals are suitable for the characterization of exciton-exciton correlations in colloidal quantum dots and for the measurement of ultrafast exciton-exciton annihilation in molecular aggregates. The experiments performed in this thesis mark an important step towards the complete characterization of the nonlinear response of quantum systems. In view of this, the concept of fluorescence-detected multiple-quantum coherence multidimensional spectroscopy introduced here offers a unified, systematic approach. In virtue of the technical advantages such as the use of a single excitation beam and the absence of nonresonant contributions, the measurement protocols developed here can be directly transferred to other incoherent observables and to sample systems in other states of matter. Furthermore, the approaches presented here can be systematically extended to higher frequency dimensions and higher orders of nonlinearity.}, subject = {Coherent Multidimensional Spectroscopy}, language = {en} } @phdthesis{Roeding2018, author = {R{\"o}ding, Sebastian}, title = {Coherent Multidimensional Spectroscopy in Molecular Beams and Liquids Using Incoherent Observables}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Das Ziel der vorliegenden Arbeit war die Umsetzung einer experimentellen Herangehensweise, welche die koh{\"a}rente zweidimensionale (2D) Spektroskopie an Proben in unterschiedlichen Aggregatzust{\"a}nden erm{\"o}glicht. Hierzu wurde zun{\"a}chst ein Aufbau f{\"u}r fl{\"u}ssige Proben realisiert, in welchem die emittierte Fluoreszenz als Messsignal zur Aufnahme der 2D Spektren genutzt wird. Im Gegensatz zu dieser bereits etablierten Methode in der fl{\"u}ssigen Phase stellt die in dieser Arbeit außerdem vorgestellte 2D Spektroskopie an gasf{\"o}rmigen Proben in einem Molekularstrahl einen neuen Ansatz dar. Hierbei werden zum ersten Mal Kationen mittels eines Flugzeitmassenspektrometers als Signal verwendet und somit ionen-spezifische 2D Spektren isolierter Molek{\"u}le erhalten. Zus{\"a}tzlich zu den experimentellen Entwicklungen wurde in dieser Arbeit ein neues Konzept zur Datenerfassung in der 2D Spektroskopie entworfen, welches mit Hilfe einer optimierten Signalabtastung und eines Compressed-Sensing Rekonstruktionsalgorithmus die Aufnahmezeit der Daten deutlich reduziert. Charakteristisch f{\"u}r die in dieser Arbeit eingesetzte Variante der 2D Spektroskopie ist die Verwendung einer phasenkoh{\"a}renten Sequenz bestehend aus vier Laserimpulsen in einer kollinearen Laserstrahlgeometrie zur Anregung der Probe. Diese Impulssequenz wurde durch einen Laserimpulsformer erzeugt, der durch {\"A}nderung der relevanten Laserimpulsparameter mit der Wiederholrate des Lasers eine schnelle Datenerfassung erm{\"o}glicht. Die Antwort der Probe auf diese Anregung wurde durch inkoh{\"a}rente Observablen gemessen, welche proportional zur Population des angeregten Zustandes sind, wie zum Beispiel Fluoreszenz oder Ionen. Um aus diesem Signal w{\"a}hrend der Datenanalyse die gew{\"u}nschten nichtlinearen Beitr{\"a}ge zu extrahieren, wurde die Messung mit verschiedenen Kombinationen der relativen Phase zwischen den Laserimpulsen wiederholt ("Phase Cycling"). Der Aufbau zur 2D Spektroskopie in fl{\"u}ssiger Phase mit Fluoreszenz-Detektion wurde an Hand von 2D Spektren des Laserfarbstoffes Cresyl Violett charakterisiert. Hierbei wurden Oszillationen in verschiedenen Bereichen des 2D Spektrums beobachtet, welche durch vibronische Koh{\"a}renzen hervorgerufen werden und mit fr{\"u}heren Beobachtungen in der Literatur {\"u}bereinstimmen. Mit dem gleichen Datensatz wurde im n{\"a}chsten Schritt das neue Konzept zur optimierten Datenerfassung demonstriert. Um ein optimiertes Schema f{\"u}r die Signalabtastung zu finden, wurde ein genetischer Algorithmus implementiert, wobei nur ein Viertel der eigentlichen Datenpunkte zur Messwerterfassung verwendet werden sollte. Dies reduziert die Zeitdauer der Datenerfassung auf ein Viertel der urspr{\"u}nglichen Messzeit. Die Rekonstruktion des vollst{\"a}ndigen Signales erfolgte mit Hilfe einer neuartigen, kompakten Darstellung von 2D Spektren basierend auf der von Neumann Basis. Diese Herangehensweise ben{\"o}tigte im Vergleich zur {\"u}blicherweise verwendeten Fourier Basis nur ein Sechstel der Koeffizienten um das Signal vollst{\"a}ndig darzustellen und erm{\"o}glichte so die erfolgreiche Rekonstruktion der Oszillationen in Cresyl Violett aus einem reduzierten Datensatz. Mit Hilfe der neuartigen koh{\"a}renten 2D Spektroskopie an Molekularstrahlen wurden {\"U}berg{\"a}nge von hoch angeregten Rydberg-Zust{\"a}nden ins ionische Kontinuum in Stickstoffdioxid untersucht. Als dominierender Beitrag stellte sich hierbei der {\"U}bergang in auto-ionisierende Zust{\"a}nde heraus. Ein wesentlicher Vorteil der Datenerfassung {\"u}ber ein Flugzeitmassenspektrometer ist die M{\"o}glichkeit der gleichzeitigen Aufnahme von 2D Spektren der Edukte und Produkte einer chemischen Reaktion. Dies wurde in Experimenten zur Mehrphotonenionisation gezeigt, in denen deutliche Unterschiede in den 2D Spektren des Stickstoffdioxid-Kations und des Stickstoffmonoxid-Fragmentes sichtbar wurden, welche auf unterschiedliche Antwortfunktionen zur{\"u}ckzuf{\"u}hren sind. Die in dieser Arbeit entwickelten experimentellen Techniken erm{\"o}glichen die schnelle Aufnahme von 2D Spektren f{\"u}r Proben in unterschiedlichen Aggregatzust{\"a}nden und erlauben einen zuverl{\"a}ssigen, direkten Vergleich der Ergebnisse. Sie sind deshalb ein Wegbereiter f{\"u}r zuk{\"u}nftige Untersuchungen der Eigenschaften quantenmechanischer Koh{\"a}renzen in photophysikalischen Prozessen oder w{\"a}hrend photochemischer Reaktionen in unterschiedlichen Aggregatzust{\"a}nden.}, subject = {Femtosekundenspektroskopie}, language = {en} }