@article{BalonovKurlbaumKoschkeretal.2023, author = {Balonov, Ilja and Kurlbaum, Max and Koschker, Ann-Cathrin and Stier, Christine and Fassnacht, Martin and Dischinger, Ulrich}, title = {Changes in plasma metabolomic profile following bariatric surgery, lifestyle intervention or diet restriction — insights from human and rat studies}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms24032354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304462}, year = {2023}, abstract = {Although bariatric surgery is known to change the metabolome, it is unclear if this is specific for the intervention or a consequence of the induced bodyweight loss. As the weight loss after Roux-en-Y Gastric Bypass (RYGB) can hardly be mimicked with an evenly effective diet in humans, translational research efforts might be helpful. A group of 188 plasma metabolites of 46 patients from the randomized controlled W{\"u}rzburg Adipositas Study (WAS) and from RYGB-treated rats (n = 6) as well as body-weight-matched controls (n = 7) were measured using liquid chromatography tandem mass spectrometry. WAS participants were randomized into intensive lifestyle modification (LS, n = 24) or RYGB (OP, n = 22). In patients in the WAS cohort, only bariatric surgery achieved a sustained weight loss (BMI -34.3\% (OP) vs. -1.2\% (LS), p ≤ 0.01). An explicit shift in the metabolomic profile was found in 57 metabolites in the human cohort and in 62 metabolites in the rodent model. Significantly higher levels of sphingolipids and lecithins were detected in both surgical groups but not in the conservatively treated human and animal groups. RYGB leads to a characteristic metabolomic profile, which differs distinctly from that following non-surgical intervention. Analysis of the human and rat data revealed that RYGB induces specific changes in the metabolome independent of weight loss.}, language = {en} } @article{KodererSchmitzWuenschetal.2022, author = {Koderer, Corinna and Schmitz, Werner and W{\"u}nsch, Anna Chiara and Balint, Julia and El-Mesery, Mohamed and Volland, Julian Manuel and Hartmann, Stefan and Linz, Christian and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {Low energy status under methionine restriction is essentially independent of proliferation or cell contact inhibition}, series = {Cells}, volume = {11}, journal = {Cells}, number = {3}, issn = {2073-4409}, doi = {10.3390/cells11030551}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262329}, year = {2022}, abstract = {Nonlimited proliferation is one of the most striking features of neoplastic cells. The basis of cell division is the sufficient presence of mass (amino acids) and energy (ATP and NADH). A sophisticated intracellular network permanently measures the mass and energy levels. Thus, in vivo restrictions in the form of amino acid, protein, or caloric restrictions strongly affect absolute lifespan and age-associated diseases such as cancer. The induction of permanent low energy metabolism (LEM) is essential in this process. The murine cell line L929 responds to methionine restriction (MetR) for a short time period with LEM at the metabolic level defined by a characteristic fingerprint consisting of the molecules acetoacetate, creatine, spermidine, GSSG, UDP-glucose, pantothenate, and ATP. Here, we used mass spectrometry (LC/MS) to investigate the influence of proliferation and contact inhibition on the energy status of cells. Interestingly, the energy status was essentially independent of proliferation or contact inhibition. LC/MS analyses showed that in full medium, the cells maintain active and energetic metabolism for optional proliferation. In contrast, MetR induced LEM independently of proliferation or contact inhibition. These results are important for cell behaviour under MetR and for the optional application of restrictions in cancer therapy.}, language = {en} } @article{BliziotisKluijtmansTinneveltetal.2022, author = {Bliziotis, Nikolaos G. and Kluijtmans, Leo A. J. and Tinnevelt, Gerjen H. and Reel, Parminder and Reel, Smarti and Langton, Katharina and Robledo, Mercedes and Pamporaki, Christina and Pecori, Alessio and Van Kralingen, Josie and Tetti, Martina and Engelke, Udo F. H. and Erlic, Zoran and Engel, Jasper and Deutschbein, Timo and N{\"o}lting, Svenja and Prejbisz, Aleksander and Richter, Susan and Adamski, Jerzy and Januszewicz, Andrzej and Ceccato, Filippo and Scaroni, Carla and Dennedy, Michael C. and Williams, Tracy A. and Lenzini, Livia and Gimenez-Roqueplo, Anne-Paule and Davies, Eleanor and Fassnacht, Martin and Remde, Hanna and Eisenhofer, Graeme and Beuschlein, Felix and Kroiss, Matthias and Jefferson, Emily and Zennaro, Maria-Christina and Wevers, Ron A. and Jansen, Jeroen J. and Deinum, Jaap and Timmers, Henri J. L. M.}, title = {Preanalytical pitfalls in untargeted plasma nuclear magnetic resonance metabolomics of endocrine hypertension}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {8}, issn = {2218-1989}, doi = {10.3390/metabo12080679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282930}, year = {2022}, abstract = {Despite considerable morbidity and mortality, numerous cases of endocrine hypertension (EHT) forms, including primary aldosteronism (PA), pheochromocytoma and functional paraganglioma (PPGL), and Cushing's syndrome (CS), remain undetected. We aimed to establish signatures for the different forms of EHT, investigate potentially confounding effects and establish unbiased disease biomarkers. Plasma samples were obtained from 13 biobanks across seven countries and analyzed using untargeted NMR metabolomics. We compared unstratified samples of 106 PHT patients to 231 EHT patients, including 104 PA, 94 PPGL and 33 CS patients. Spectra were subjected to a multivariate statistical comparison of PHT to EHT forms and the associated signatures were obtained. Three approaches were applied to investigate and correct confounding effects. Though we found signatures that could separate PHT from EHT forms, there were also key similarities with the signatures of sample center of origin and sample age. The study design restricted the applicability of the corrections employed. With the samples that were available, no biomarkers for PHT vs. EHT could be identified. The complexity of the confounding effects, evidenced by their robustness to correction approaches, highlighted the need for a consensus on how to deal with variabilities probably attributed to preanalytical factors in retrospective, multicenter metabolomics studies.}, language = {en} } @article{ReelReelErlicetal.2022, author = {Reel, Smarti and Reel, Parminder S. and Erlic, Zoran and Amar, Laurence and Pecori, Alessio and Larsen, Casper K. and Tetti, Martina and Pamporaki, Christina and Prehn, Cornelia and Adamski, Jerzy and Prejbisz, Aleksander and Ceccato, Filippo and Scaroni, Carla and Kroiss, Matthias and Dennedy, Michael C. and Deinum, Jaap and Eisenhofer, Graeme and Langton, Katharina and Mulatero, Paolo and Reincke, Martin and Rossi, Gian Paolo and Lenzini, Livia and Davies, Eleanor and Gimenez-Roqueplo, Anne-Paule and Assi{\´e}, Guillaume and Blanchard, Anne and Zennaro, Maria-Christina and Beuschlein, Felix and Jefferson, Emily R.}, title = {Predicting hypertension subtypes with machine learning using targeted metabolites and their ratios}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {8}, issn = {2218-1989}, doi = {10.3390/metabo12080755}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286161}, year = {2022}, abstract = {Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20\% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92\% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.}, language = {en} } @article{BohnertReinertTrellaetal.2021, author = {Bohnert, Simone and Reinert, Christoph and Trella, Stefanie and Schmitz, Werner and Ondruschka, Benjamin and Bohnert, Michael}, title = {Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, issn = {0937-9827}, doi = {10.1007/s00414-020-02462-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235724}, pages = {183-191}, year = {2021}, abstract = {In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples.}, language = {en} } @article{SchaeblerAmatobiHornetal.2020, author = {Sch{\"a}bler, Stefan and Amatobi, Kelechi M. and Horn, Melanie and Rieger, Dirk and Helfrich‑F{\"o}rster, Charlotte and Mueller, Martin J. and Wegener, Christian and Fekete, Agnes}, title = {Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation}, series = {Cellular and Molecular Life Sciences}, volume = {77}, journal = {Cellular and Molecular Life Sciences}, issn = {1420-682X}, doi = {10.1007/s00018-019-03441-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232432}, pages = {4939-4956}, year = {2020}, abstract = {The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants}, language = {en} } @article{NaglerNaegeleGillietal.2018, author = {Nagler, Matthias and N{\"a}gele, Thomas and Gilli, Christian and Fragner, Lena and Korte, Arthur and Platzer, Alexander and Farlow, Ashley and Nordborg, Magnus and Weckwerth, Wolfram}, title = {Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, number = {1556}, issn = {1664-462X}, doi = {10.3389/fpls.2018.01556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189560}, year = {2018}, abstract = {Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites.}, language = {en} } @article{AbdelhafezFawzyFahimetal.2018, author = {Abdelhafez, Omnia Hesham and Fawzy, Michael Atef and Fahim, John Refaat and Desoukey, Samar Yehia and Krischke, Markus and Mueller, Martin J. and Abdelmohsen, Usama Ramadan}, title = {Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0202362}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177243}, pages = {e0202362}, year = {2018}, abstract = {Malvaviscus arboreus Cav. is a medicinal plant belonging to family Malvaceae with both ethnomedical and culinary value; however, its phytochemical and biological profiles have been scarcely studied. Accordingly, this work was designed to explore the chemical composition and the hepatoprotective potential of M. arboreus against carbon tetrachloride (CCl\(_4\))-induced hepatotoxicity. The total extract of the aerial parts and its derived fractions (petroleum ether, dichloromethane, ethyl acetate, and aqueous) were orally administered to rats for six consecutive days, followed by injection of CCl\(_4\) (1:1 v/v, in olive oil, 1.5 ml/kg, i.p.) on the next day. Results showed that the ethyl acetate and dichloromethane fractions significantly alleviated liver injury in rats as indicated by the reduced levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and malondialdehyde (MDA), along with enhancement of the total antioxidant capacities of their livers, with the maximum effects were recorded by the ethyl acetate fraction. Moreover, the protective actions of both fractions were comparable to those of silymarin (100 mg/kg), and have been also substantiated by histopathological evaluations. On the other hand, liquid chromatography-high resolution electrospray ionization mass spectrometry (LC‒HR‒ESI‒MS) metabolomic profiling of the crude extract of M. arboreus aerial parts showed the presence of a variety of phytochemicals, mostly phenolics, whereas the detailed chemical analysis of the most active fraction (i.e. ethyl acetate) resulted in the isolation and identification of six compounds for the first time in the genus, comprising four phenolic acids; β-resorcylic, caffeic, protocatechuic, and 4-hydroxyphenylacetic acids, in addition to two flavonoids; trifolin and astragalin. Such phenolic principles, together with their probable synergistic antioxidant and liver-protecting properties, seem to contribute to the observed hepatoprotective potential of M. arboreus.}, language = {en} } @article{ChengMacIntyreRamadanAbdelmohsenetal.2015, author = {Cheng, Cheng and MacIntyre, Lynsey and Ramadan Abdelmohsen, Usama and Horn, Hannes and Polymenakou, Paraskevi N. and Edrada-Ebel, RuAngelie and Hentschel, Ute}, title = {Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0138528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125138}, pages = {e0138528}, year = {2015}, abstract = {Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5\% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.}, language = {en} } @article{MacintyreZhangViegelmannetal.2014, author = {Macintyre, Lynsey and Zhang, Tong and Viegelmann, Christina and Martinez, Ignacio Juarez and Cheng, Cheng and Dowdells, Catherine and Abdelmohsen, Usama Ramadan and Gernert, Christine and Hentschel, Ute and Edrada-Ebel, RuAngelie}, title = {Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts}, series = {Marine Drugs}, volume = {12}, journal = {Marine Drugs}, number = {6}, issn = {1660-3397}, doi = {10.3390/md12063416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116097}, pages = {3416-3448}, year = {2014}, abstract = {Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR H-1 and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.}, language = {en} } @article{ArltBiehlTayloretal.2011, author = {Arlt, Wiebke and Biehl, Michael and Taylor, Angela E. and Hahner, Stefanie and Lib{\´e}, Rossella and Hughes, Beverly A. and Schneider, Petra and Smith, David J. and Stiekema, Han and Krone, Nils and Porfiri, Emilio and Opocher, Giuseppe and Bertherat, Jer{\^o}me and Mantero, Franco and Allolio, Bruno and Terzolo, Massimo and Nightingale, Peter and Shackleton, Cedric H. L. and Bertagna, Xavier and Fassnacht, Martin and Stewart, Paul M.}, title = {Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors}, series = {The Journal of Clinical Endocrinology \& Metabolism}, volume = {96}, journal = {The Journal of Clinical Endocrinology \& Metabolism}, number = {12}, doi = {10.1210/jc.2011-1565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154682}, pages = {3775 -- 3784}, year = {2011}, abstract = {Context: Adrenal tumors have a prevalence of around 2\% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2-11\% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values. Objective: Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy. Design: Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19-84 yr) and 45 ACC patients (20-80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26-201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids. Results: Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90\% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88\% (area under the curve = 0.96) when using only the nine most differentiating markers. Conclusions: Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas.}, language = {en} }