@phdthesis{Hertlein2014, author = {Hertlein, Tobias}, title = {Visualization of Staphylococcus aureus infections and antibiotic therapy by bioluminescence and 19F magnetic resonance imaging with perfluorocarbon emulsions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105349}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Staphylococcus aureus is a major threat to public health systems all over the globe. This second most cause of nosocomial infections is able to provoke a wide variety of different types of infection in humans and animals, ranging from superficial skin and skin structure infections to invasive disease like sepsis or pneumonia. But not enough, this pathogen is also notorious in acquiring and/or developing resistance to antimicrobial compounds, thus limiting available treatment options severely. Therefore, development of new compounds and strategies to fight S. aureus is of paramount importance. But since only 1 out of 5 compounds, which entered clinical trials, becomes a drug, the preclinical evaluation of promising compounds has to be reconsidered, too. The aim of this thesis was to address both sides of this problem: first, to improve preclinical testing by incorporating in vivo imaging technologies to the preclinical testing procedure in order to acquire additional and clearer data about efficacy of promising compounds and second, by evaluating lysostaphin, which is a promising, new option to fight S. aureus infections. The first aim of this thesis focused on the establishment of a dual modality in vivo imaging platform, consisting of Bioluminescence Imaging (BLI) and Magnetic Resonance Imaging (MRI), to offer detailed insights into the course and gravity of S. aureus infection in the murine thigh infection model. Since luciferase-expressing S. aureus strains were generated in former studies and enabled thus bioluminescence imaging of bacterial infection, this technology should be implemented into the compound evaluation platform in order to non-invasively track the bacterial burden over time. MRI, in contrast, was only rarely used in earlier studies to visualize and measure the course of infection or efficacy of anti-bacterial therapy. Thus, the first set of experiments was performed to identify benefits and drawbacks of visualizing S. aureus infections in the mouse model by different MR methods. Native, proton-based MR imaging showed in this regard increased T2 relaxation times in the infected thigh muscles, but it was not possible to define a clear border between infected and uninfected tissue. Iron oxide nanoparticles and perfluorocarbon emulsions, two MR contrast agents or tracer, in contrast, offered this distinction. Iron oxide particles were detected in this regard by their distortion of 1H signal in proton-based MRI, while perfluorocarbon emulsion was identified by 19F MRI. Mammals do not harbor sufficient intrinsic amounts of 19F to deliver specific signal and therefore, 19F MR imaging visualizes only the signal of administered perfluorocarbon emulsion. The in vivo accumulation of perfluorocarbon emulsion can be imaged by 19F MRI and overlayed on a simultaneously acquired 1H MR image, which shows the anatomical context in clear detail. Since this is advantageous compared to contrast agent based MR methods like iron oxide particle-based MRI, further experiments were performed with perfluorocarbon emulsions and 19F MRI. Experimental studies to elucidate the accumulation of perfluorocarbon emulsion at the site of infection showed robust 19F MR signals after administration between day 2 and at least day 8 p.i.. Perfluorocarbon emulsion accumulated in all investigated mice in the shape of a 'hollow sphere' at the rim of the abscess area and the signal remained stable as long as the infection prevailed. In order to identify the mechanism of accumulation, flow cytometry, cell sorting and histology studies were performed. Flow cytometry and cell sorting analysis of immune cells at the site of infection showed that neutrophils, monocytes, macrophages and dendritic cells carried contrast media at the site of infection with neutrophils accounting for the overwhelming portion of perfluorocarbon signal. In general, most of the signal was associated with immune cells, thus indicating specific immune cell dependent accumulation. Histology supported this observation since perfluorocarbon emulsion related fluorescence could only be visualized in close proximity to immune cell nuclei. After establishing and testing of 19F MRI with perfluorocarbon emulsions as infection imaging modality, the effects of antibiotic therapy upon MR signal was investigated in order to evaluate the capability of this modality for preclinical testing procedure. Thus, the efficacy of vancomycin and linezolid, two clinically highly relevant anti - S. aureus compounds, were tested in the murine thigh infection model. Both of them showed reduction of the colony forming units and bioluminescence signal, but also of perfluorocarbon emulsion accumulation strength and volume at the site of infection, which was visualized and quantified by 19F MRI. The efficacy pattern with linezolid being more efficient in clearing bacterial infection was shown similarly by all three methods. In consequence, 19F MRI with perfluorocarbon emulsion as MR tracer proved to be capable to visualize antibacterial therapy in preclinical testing models. The next step was consequently to evaluate a promising new compound against S. aureus infections. Thus, lysostaphin, an endo-peptidase that cleaves the cell wall of S. aureus, was tested in different concentrations alone or in combination with oxacillin for efficacy in murine thigh and catheter associated infection models. Lysostaphin only in the concentration of 5 mg/kg body weight or combined with oxacillin in the concentration of 2 mg/kg showed strong reduction of bacterial burden by colony forming unit determination and bioluminescence imaging in both models. The perfluorocarbon accumulation was investigated in the thigh infection model by 19F MRI and was strongly reduced in terms of volume and signal strength in both above-mentioned groups. In general, lysostaphin showed comparable or superior efficacy than vancomycin or oxacillin alone. Therefore, further development of lysostaphin for the treatment of S. aureus infections is recommended by these experiments. Overall, the antibiotic efficacy pattern of all applied antibiotic regimens was similar with all three applied methods, demonstrating the usefulness of MRI for antibiotic efficacy testing. Importantly, treatment with oxacillin either alone or in combination with lysostaphin resulted in stronger perfluorocarbon emulsion accumulation at the site of infection than expected compared to the results from bioluminescence imaging and colony forming unit determination. This might be an indication for immunomodulatory properties of oxacillin. Further murine infection experiments demonstrated in this context a differential release of cytokine and chemokines in the infected thigh muscle in dependence of the applied antibacterial therapy. Especially treatment with oxacillin, but to a less degree with minocycline or linezolid, too, exhibited high levels of various cytokines and chemokines, although they reduced the bacterial burden efficiently. In consequence, possible immunomodulatory effects of antibacterial compounds have to be taken into account for future applications of imaging platforms relying on the visualization of the immune response. However, this observation opens a new field for these imaging modalities since it might be extraordinary interesting to study the immunomodulatory effects of compounds or even bacterial factors in vivo. And finally, a two modality imaging platform which combines methods to visualize on the one hand the bacterial burden and on the other hand the immune response offers an innovative, new platform to study host-pathogen interaction in vivo in a non-invasive fashion. In summary, it could be shown that perfluorocarbon emulsions accumulate in immune cells at the site of infection in the murine S. aureus thigh infection model. The accumulation pattern shapes a 'hollow sphere' at the rim of the abscess area and its size and perfluorocarbon content is dependent on the severity of disease and/or efficacy of antibiotic therapy. Thus, 19F MRI with perfluorocarbon emulsions is a useful imaging modality to visualize sites and course of infection as well as to evaluate promising antibacterial drug candidates. Furthermore, since the accumulation of tracer depends on immune cells, it might be additionally interesting for studies regarding the immune response to infections, auto-immune diseases or cancer, but also to investigate the efficacy of immunomodulatory compounds and immunization.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{TranGia2014, author = {Tran-Gia, Johannes}, title = {Model-Based Reconstruction Methods for MR Relaxometry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, a model-based acceleration of parameter mapping (MAP) for the determination of the tissue parameter T1 using magnetic resonance imaging (MRI) is introduced. The iterative reconstruction uses prior knowledge about the relaxation behavior of the longitudinal magnetization after a suitable magnetization preparation to generate a series of fully sampled k-spaces from a strongly undersampled acquisition. A Fourier transform results in a spatially resolved time course of the longitudinal relaxation process, or equivalently, a spatially resolved map of the longitudinal relaxation time T1. In its fastest implementation, the MAP algorithm enables the reconstruction of a T1 map from a radial gradient echo dataset acquired within only a few seconds after magnetization preparation, while the acquisition time of conventional T1 mapping techniques typically lies in the range of a few minutes. After validation of the MAP algorithm for two different types of magnetization preparation (saturation recovery \& inversion recovery), the developed algorithm was applied in different areas of preclinical and clinical MRI and possible advantages and disadvantages were evaluated.}, subject = {Kernspintomographie}, language = {en} }