@phdthesis{Shaikh2024, author = {Shaikh, Muhammad Haroon}, title = {Nicht-h{\"a}matopoetische lymphoide Stromazellen aktivieren alloreaktive CD4\(^+\) T-Zellen in der Initiierung der akuten Graft-versus-Host Disease}, doi = {10.25972/OPUS-25201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In der Initiationsphase der akuten Graft-versus-Host Erkrankung (GvHD) werden CD4+ T-Zellen in den lymphatischen Organen durch h{\"a}matopoietische Antigen-pr{\"a}sentierende Zellen aktiviert. Im Gegensatz dazu, werden in der Effektorphase CD4+ T-Zellen von nicht-h{\"a}matopoetischen Zellen im D{\"u}nndarm aktiviert. Wir stellten die Hypothese auf, dass alloreaktive CD4+ T-Zellen nach allogener h{\"a}matopoetischer Zelltransplantation, welche in der Initiationsphase der aGvHD vorwiegend in die sekund{\"a}ren lymphatischen Organe migrieren, dort durch nicht-h{\"a}matopoetische Lymphknoten-Stromazellen {\"u}ber die Erkennung von MHC-Klasse II aktiviert werden. Um diese Hypothese zu testen, setzten wir ein von allogenen CD4+ T-Zellen-abh{\"a}ngiges MHC Major Mismatch aGvHD Mausmodell ein, um diese Zusammenh{\"a}nge n{\"a}her zu erforschen. Mittels Biolumineszenz-Bildgebung und dreidimensionale Lichtblattmikroskopie und Durchflusszytometrie-Analysen von fr{\"u}heren Zeitpunkten nach einer alloHCT bzw. im Anfangsstadium der aGvHD konnten wir zeigen, dass allogene T-Zellen exklusiv in die Milz, Lymphknoten und die Peyerschen Plaques migrieren und nicht in die intestinale Lamina propria. Indem wir transgene Mauslinien verwendeten, die keine oder eine nur partielle komplette h{\"a}matopoietische Antigenpr{\"a}sentation aufwiesen, konnten wir eine sehr fr{\"u}h auf die alloHCT folgende allogene CD4+ T-Zellaktivierung in den lymphoiden Organen von MHCIIΔCD11c and MHCIIΔ Knochenmark-Chim{\"a}ren nachweisen. Aufgrund des, bei den MHCIIΔ Knochenmarks-Chim{\"a}ren auftretenden Versagens der negativen Thymusselektion und die daraus resultierende autoreaktive Immunreaktionen nach einer syngenen HCST stellte sich heraus, dass dies ein ungeeignetes Modell f{\"u}r die Untersuchung der Pr{\"a}sentation nicht-h{\"a}matopoetischer Antigene bei GvHD ist. Um diese Herausforderung zu bew{\"a}ltigen, generierten wir MHCIIΔVav1 M{\"a}use bei denen die MHC-Klasse-II-Expression auf allen h{\"a}matopoetischen Zellen fehlt. MHCIIΔVav1 M{\"a}use entwickelten eine aGvHD, wobei die Lymphknoten-Stromazellen dieser Tiere allogene CD4+ T-Zellen in gemischten Lymphozytenreaktionen aktivieren konnten. Ebenso konnten mesenteriale Lymphknoten von CD11c.DTR-M{\"a}usen, die zuvor in eine MHCIIΔ Maus transplantiert wurden, CD4+ T-Zellen in vivo aktivieren, wodurch die Lymphknoten-Stromazellen eindeutig als nicht-h{\"a}matopoetische Antigen-pr{\"a}sentierende Zellen der lymphoiden Organe nachgewiesen werden konnten. {\"U}ber das Cre/loxP-System konnten wir Knockout-M{\"a}use mit fehlender MHCII-Expression in Subpopulationen von Lymphknoten-Stromazellen generieren und verwendeten dann Einzelzell-RNA-Sequenzierung. Hier w{\"a}hlten wir Ccl19 und VE-Cadherin aus, um unsere Analyse spezifisch auf die fibroblastischen retikul{\"a}ren Zellen bzw. Endothelzellen der Lymphknoten zu konzentrieren. Bei MHCIIΔCcl19 M{\"a}usen war die Aktivierung alloreaktiver CD4+ T-Zellen in der Initiationsphase der aGvHD m{\"a}ßig reduziert, w{\"a}hrend das Fehlen von MHCII auf den fibroblastischen retikul{\"a}ren Zellen zu einer Hyperaktivierung allogener CD4+ T-Zellen f{\"u}hrte, was wiederum eine schlechtere {\"U}berlebensrate der M{\"a}use zur Folge hatte. Dieser Ph{\"a}notyp wurde durch regulatorische T-Zellen moduliert, die in der Lage waren, H2-Ab1fl M{\"a}use von den Folgen von GvHD zu retten, jedoch nicht die MHCIIΔCcl19. Ein Knock-out von MHCII auf Endothelzellen von MHCIIΔVE-Cadherin M{\"a}usen, f{\"u}hrte in der Initiationsphase der GvHD nur zu einer m{\"a}ßig reduzierten Aktivierung von CD4+ T-Zellen. Umgekehrt zeigten MHCIIΔVE-Cadherin M{\"a}use im Langzeit{\"u}berleben jedoch einen protektiven Ph{\"a}notyp verglichen mit wurfgeschwister H2-Ab1fl M{\"a}usen. Um die Bedeutung der MHCII-Antigenpr{\"a}sentation der Endothelzellen zu untersuchen, generierten wir außerdem MHCIIΔVE-CadherinΔVav1 M{\"a}use, bei welchen eine Antigenpr{\"a}sentation, weder im endothelialen noch im h{\"a}matopoetischen Kompartiment m{\"o}glich war. Lymphknoten-Stromazellen von MHCIIΔVE-CadherinΔVav1 M{\"a}usen waren nicht in der Lage, alloreaktive CD4+ T-Zellen in einer gemischten Lymphozytenreaktion zu aktivieren. Insgesamt konnten wir zum ersten Mal beweisen, dass die MHC-Klassse II auf den Lymphknoten-Stromazellen eine entscheidende Rolle bei der Modulation allogener CD4+ T-Zellen in der Initiations- und schließlich in der Effektorphase der Graft-versus-Host-Disease spielt.}, subject = {Transplantat-Wirt-Reaktion}, language = {en} } @phdthesis{PenaMosca2024, author = {Pe{\~n}a Mosca, Mar{\´i}a Josefina}, title = {Local regulation of T-cell immunity in the intestinal mucosa}, doi = {10.25972/OPUS-35266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352665}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {After priming in Peyer's patches (PPs) and mesenteric lymph nodes (mLN) T- cells infiltrate the intestine through lymphatic draining and homing through the bloodstream. However, we found that in mouse models of acute graft-versus-host disease (GvHD), a subset of alloreactive T-cells directly migrates from PPs to the adjacent intestinal lamina propria (LP), bypassing the normal lymphatic drainage and vascular trafficking routes. Notably, this direct migration occurred in irradiated and unirradiated GvHD models, indicating that irradiation is not a prerequisite for this observed behavior. Next, we established a method termed serial intravascular staining (SIVS) in mouse models to systematically investigate the trafficking and migration of donor T- cells in the early stages of acute GvHD initiation. We found that the direct migration of T-cells from PPs to LP resulted in faster recruitment of cells after allogeneic hematopoietic cell transplantation (allo-HCT). These directly migrating T-cells were found to be in an activated and proliferative state, exhibiting a TH1/TH17-like phenotype and producing cytokines such as IFN-γ and TNF-α. Furthermore, we observed that the directly migrating alloreactive T-cells expressed specific integrins (α4+, αE+) and chemokine receptors (CxCR3+, CCR5+, and CCR9+). Surprisingly, blocking these integrins and chemokine-coupled receptors did not hinder the direct migration of T- cells from PPs to LP, suggesting the involvement of alternative mechanisms. Previous experiments ruled out the involvement of S1PR1 and topographical features of macrophages, leading us to hypothesize that mediators of cytoskeleton reorganization, such as Coro1a, Dock2, or Cdc42, may play a role in this unique migration process. Additionally, we observed that directly migrating T-cells created a local inflammatory microenvironment, which attracts circulating T-cells. Histological analysis confirmed that alloreactive PPs-derived T-cells and bloodborne T-cells colocalized. We employed two experimental approaches, including either photoconversion of T-cells in PPs or direct transfer of activated T-cells into the vasculature, to demonstrate this colocalization. We hypothesize that cytokines released by migrating T-cells, such as IFN-γ and TNF-α, may play a role in recruiting T-cells from the vasculature, as inhibiting chemokine-coupled receptors did not impair recruitment.}, subject = {T-Lymphozyt}, language = {en} } @phdthesis{Uri2019, author = {Uri, Anna}, title = {Differential requirement for CD28 co-stimulation on donor T cell subsets in mouse models of acute graft versus host disease and graft versus tumour effect}, doi = {10.25972/OPUS-16586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Hematopoietic stem cell transplantation is a curative therapy for malignant diseases of the haematopoietic system. The patients first undergo chemotherapy or irradiation therapy which depletes the majority of tumour cells before they receive the transplant, consisting of haematopoietic stem cells and mature T cells from a healthy donor. The donor T cells kill malignant cells that have not been eliminated by the conditioning therapy (graft versus leukaemia effect, GvL), and, therefore, are crucially required to prevent relapse of the tumour. However, the donor T cells may also severely damage the patient's organs causing acute graft versus host disease (aGvHD). In mice, aGvHD can be prevented by interfering with the co-stimulatory CD28 signal on donor T cells. However, experimental models using conventional CD28 knockout mice as T cell donors or αCD28 antibodies have some disadvantages, i.e. impaired T cell development in the thymus of CD28 knockout mice and systemic CD28 blockade with αCD28 antibodies. Thus, it remains unclear how CD28 co-stimulation on different donor T cell subsets contributes to the GvL effect and aGvHD, respectively. We developed mouse models of aGvHD and the GvL effect that allowed to selectively delete CD28 on certain donor T cell populations or on all donor T cells. CD4+ conventional T cells (Tconv cells), regulatory T cells (Treg cells) or CD8+ T cells were isolated from either Tamoxifen-inducible CD28 knockout (iCD28KO) mice or their wild type (wt) littermates. Allogeneic recipient mice were then transplanted with T cell depleted bone marrow cells and different combinations of iCD28KO and wt T cell subsets. Tamoxifen treatment of the recipients caused irreversible CD28 deletion on the iCD28KO donor T cell population. In order to study the GvL response, BCL-1 tumour cells were injected into the mice shortly before transfer of the T cells. CD4+ Tconv mediated aGvHD was efficiently inhibited when wt Treg cells were co-transplanted. In contrast, after selective CD28 deletion on donor Treg cells, the mice developed a late and lethal flare of aGvHD, i.e. late-onset aGvHD. This was associated with a decline in iCD28KO Treg cell numbers around day 20 after transplantation. CD28 ablation on either donor CD4+ Tconv cells or CD8+ T cells reduced but did not abrogate aGvHD. Moreover, iCD28KO and wt CD8+ T cells were equally capable of killing allogeneic target cells in vivo and in vitro. Due to this sufficient anti-tumour activity of iCD28KO CD8+ T cells, they had a therapeutic effect in our GvL model and 25\% of the mice survived until the end of the experiment (day 120) without any sign of the malignant disease. Similarly, CD28 deletion on all donor T cells induced long-term survival. This was not the case when all donor T cells were isolated from wt donor mice. In contrast to the beneficial outcome after CD28 deletion on all donor T cells or only CD8+ T cells, selective CD28 deletion on donor CD4+ Tconv cells completely abrogated the GvL effect due to insufficient CD4+ T cell help from iCD28KO CD4+ Tconv cells. This study demonstrates that therapeutic inhibition of the co-stimulatory CD28 signal in either all donor T cells or only in CD8+ T cells might protect patients from aGvHD without increasing the risk of relapse of the underlying disease. Moreover, deletion of CD28 on donor Treg cells constitutes a mouse model of late-onset aGvHD which can be a useful tool in aGvHD research.}, subject = {Antigen CD28}, language = {en} } @phdthesis{Brede2013, author = {Brede, Christian}, title = {Peripheral alloantigen expression directs the organ specific T cell infiltration after hematopoietic cell transplantation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In acute graft-versus-host disease (GVHD) alloreactive donor T cells selectively damage skin, liver, and the gastrointestinal tract while other organs are rarely affected. The mechanism of this selective target tissue infiltration is not well understood. We investigated the importance of alloantigen expression for the selective organ manifestation by examining spatiotemporal changes of cellular and molecular events after allogeneic hematopoietic cell transplantation (allo-HCT). To accomplish this we established a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized protocols for antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues. This approach allowed us to successfully quantify changes in expression patterns of mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and T cell responses in Peyer's patches following allo-HCT. In addition, we proofed that LSFM is suitable to map individual T cell subsets after HCT and detected rare cellular events. We employed this versatile technique to study the role of alloantigen expression for the selective organ manifestation after allo-HCT. Therefore, we used a T cell receptor (TCR) transgenic mouse model of GVHD that targets a single peptide antigen and thereby mimics a major histocompatibility complex (MHC)-matched single antigen mismatched (miHAg-mismatched) HCT. We transplanted TCR transgenic (OT-I) T cells into myeloablatively conditioned hosts that either express the peptide antigen ovalbumin ubiquitously (βa-Ova) or selectively in the pancreas (RIP-mOva), an organ that is normally not affected by acute GVHD. Of note, at day+6 after HCT we observed that OT-I T cell infiltration occurred in an alloantigen dependent manner. In βa-Ova recipients, where antigen was ubiquitously expressed, OT-I T cells infiltrated all organs and were not restricted to gastrointestinal tract, liver, and skin. In RIP-mOva recipients, where cognate antigen was only expressed in the pancreas, OT-I T cells selectively infiltrated this organ that is usually spared in acute GVHD. In conditioned RIP-mOva the transfer of 100 OT-I T cells sufficed to effectively infiltrate and destroy pancreatic islets resulting in 100\% mortality. By employing intact tissue LSFM in RIP-mOva recipients, we identified very low numbers of initial islet infiltrating T cells on day+4 after HCT followed by a massive T cell migration to the pancreas within the following 24 hours. This suggested an effective mechanism of effector T cell recruitment to the tissue of alloantigen expression after initial antigen specific T cell encounter. In chimeras that either expressed the model antigen ovalbumin selectively in hematopoietic or in parenchymal cells only, transplanted OT-I T cells infiltrated target tissues irrespective of which compartment expressed the alloantigen. As IFN-γ could be detected in the serum of transplanted ovalbumin expressing recipients (βa-Ova, βa-Ova-chimeras and RIP-mOva) at day+6 after HCT, we hypothesized that this cytokine may be functionally involved in antigen specific OT-I T cell mediated pathology. In vitro activated OT-I T cells responded with the production of IFN-γ upon antigen re-encounter suggesting that IFN-γ might be relevant in the alloantigen dependent organ infiltration of antigen specific CD8+ T cell infiltration after HCT. Based on these data we propose that alloantigen expression plays an important role in organ specific T cell infiltration during acute GVHD and that initial alloreactive T cells recognizing the cognate antigen propagate a vicious cycle of enhanced T cell recruitment that subsequently culminates in the exacerbation of tissue restricted GVHD.}, subject = {Alloantigen}, language = {en} } @phdthesis{Baeuerlein2012, author = {B{\"a}uerlein, Carina}, title = {Identification of new predictive markers for an early diagnosis of an imminent acute Graft-versus-Host Disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78489}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Acute graft-versus-host disease (aGvHD) is an immune syndrome associated with allogeneic hematopoietic cell transplantation (allo-HCT) that is mediated by alloreactive donor T cells attacking the gastrointestinal tract, liver, and skin of the host. Early diagnosis remains problematic and to date mainly relies on clinical symptoms and histopathology. Previously, different groups demonstrated that in order to cause aGvHD, alloreactive T cells require the expression of appropriate homing receptors to efficiently migrate from their priming sites to their target tissues. Therefore, the development of a predictive test based on the homing receptor expression profile of peripheral blood T cells seems attractive to identify patients at risk before the onset of aGvHD. The aim of this study was to analyze migrating alloreactive donor T cell kinetics in the peripheral blood early after allo-HCT in a murine model across minor histocompatibility antigens (miHAg) followed by a precise characterization of the homing receptor expression profile of migrating donor lymphocytes in order to identify suitable predictive markers. Combining daily bioluminescence imaging (BLI) and flow cytometry (FC) allowed defining two weeks of massive alloreactive donor T cell migration before clinical aGvHD symptoms became apparent. Peripheral blood donor T lymphocytes highly up-regulated the homing markers α4β7 integrin, and P- and E-selectin-ligand at peak time points of cell migration. The combination with the activation markers CD25 and CD69 and low expression levels of L-selectin allowed alloreactive donor T cell definition. Based on this migration phase we postulated a potential diagnostic window to precisely identify alloreactive donor T cells upon their homing receptor expression profile. Consequently, targeted pre-emptive treatment with rapamycin starting at the earliest detection time point of alloreactive donor T cells in the peripheral blood (day+6) significantly prolonged survival of treated mice. Based on this data, we propose a potential diagnostic window for alloreactive cell detection based on their homing receptor expression profile for a timely and effective therapeutic intervention before the clinical manifestation of aGvHD.}, subject = {Transplantat-Wirt-Reaktion}, language = {en} } @phdthesis{Stuehler2010, author = {St{\"u}hler, Claudia}, title = {Strategies to prevent graft-versus-host disease and augment anti-fungal immunity in allogeneic hematopoietic stem cell transplant recipients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51957}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Allogeneic hematopoietic stem cell transplantation (HSCT) is often the only effective treatment for patients with hematological malignancies, but its curative potential is often limited by the development of acute or chronic graft-versus-host disease (GvHD). Although extensive immunosuppressive therapy is highly efficient in the prevention or treatment of GvHD, it greatly increases the risk for life-threatening opportunistic fungal or viral infections and the recurrence of malignant disease. The possibility to selectively deplete alloreactive T cells from donor grafts prior or after transplantation would greatly diminish the need for immunosuppressive therapy in the transplant recipient and thereby greatly improve its clinical outcome. The molecular chaperone heat shock protein of 90 kDa (Hsp90) has been previously shown to stabilize many signal transduction proteins involved in T lymphocyte activation and proliferation and is furthermore able to exert anti-apoptotic effects in different cell types. The aim of this study was therefore to investigate the possibility to selectively target activated, proliferating T cells in lymphocyte populations by inhibition of Hsp90, without compromising viability and function of non-reactive T cell populations including pathogen-specific T lymphocytes. It could be shown in this work, that activated T cells are indeed more prone to apoptotic cell death in the presence of Hsp90 inhibitors than resting cells and that treatment of mixed lymphocyte cultures with such inhibitors eliminates the proliferation of alloreactive cells. In contrast, T cells remaining in a resting state during inhibitor treatment remain viable and also display functional virus-specific responses after inhibitor removal. These data suggest, that Hsp90 could represent a novel target for selective depletion of alloreactive T cells and that application of Hsp90 inhibitors could be a potential approach to prevent or treat GvHD without impairing pathogen-specific T cell immunity. In the second part of this work, the immune responses to strictly defined antigens of the opportunistic pathogenic fungus Aspergillus fumigatus were characterized. Opportunistic fungal infections are highly prevalent in immunocompromized and immunosuppressed individuals, especially in HSCT recipients suffering from GvDH. Although antifungal treatment is permanently improved, invasive fungal infections are still often fatal. In healthy individuals clinical disease is rare, because innate and adaptive immunity act in conjunction to protect the host. Therefore one possible strategy to prevent and treat life-threatening fungal infections in immunocompromized patients is to improve host resistance by augmenting the antifungal functions of the immune system, for example by vaccination or adoptive transfer of antigen-specific T cells. Based on previous findings, the objective of this dissertation was to identify and characterize distinct immunogenic A. fumigatus antigens that could be used for clinical application like vaccination or ex vivo generation of antigen-specific T cells and to characterize the interaction of this antigen-specific lymphocytes with cells of the innate immune system. First, memory T cell responses to different recombinant A. fumigatus proteins in healthy individuals were evaluated. The majority of tested donors displayed stable CD4+ TH1 responses to the Crf1 protein, whereas responses to the other antigens tested could only be detected in a limited number of donors, qualifying Crf1 as potential candidate antigen for clinical use. It was also possible to identify an immunodominant MHC class II DRB1*04-restricted epitope of Crf1 and to generate T cell clones specific for this epitope. This Crf1-specific T cell clones could be specifically activated by dendritic cells fed with synthetic peptide, recombinant protein or germinating A. fumigatus conidia or outgrown hyphae. Interestingly, these A. fumigatus-specific T cell clones also responded to stimulation with Candida albicans, which likewise causes opportunistic infections in immunocompromized patients and encodes for a glucosyltransferase similar to A. fumigatus Crf1. It was also possible to show that supernatant harvested from activated Crf1-specific T cell cultures was able to significantly increase fungal killing by monocytes. These data indicate that the specified FHT epitope of the A. fumigatus protein Crf1 could be potentially used as antigen for vaccination protocols or for the generation of Aspergillus-specific effector T cells for adoptive transfer.}, subject = {Transplantat-Wirt-Reaktion}, language = {en} }