@article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{SolimandoDaViaBollietal.2022, author = {Solimando, Antonio Giovanni and Da Vi{\`a}, Matteo Claudio and Bolli, Niccol{\`o} and Steinbrunn, Torsten}, title = {The route of the malignant plasma cell in its survival niche: exploring "Multiple Myelomas"}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {13}, issn = {2072-6694}, doi = {10.3390/cancers14133271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281728}, year = {2022}, abstract = {Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.}, language = {en} } @article{DietlSchwinnDietletal.2016, author = {Dietl, Sebastian and Schwinn, Stefanie and Dietl, Susanne and Riedl, Simone and Deinlein, Frank and Rutkowski, Stefan and von Bueren, Andre O. and Krauss, J{\"u}rgen and Schweitzer, Tilmann and Vince, Giles H. and Picard, Daniel and Eyrich, Matthias and Rosenwald, Andreas and Ramaswamy, Vijay and Taylor, Michael D. and Remke, Marc and Monoranu, Camelia M. and Beilhack, Andreas and Schlegel, Paul G. and W{\"o}lfl, Matthias}, title = {MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {115}, doi = {10.1186/s12885-016-2170-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145877}, year = {2016}, abstract = {Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma.}, language = {en} } @article{BruttelWischhusen2014, author = {Bruttel, Valentin S. and Wischhusen, J{\"o}rg}, title = {Cancer Stem Cell Immunology: Key to Understanding Tumorigenesis and Tumor Immune Escape?}, series = {Frontiers in Immunology}, volume = {5}, journal = {Frontiers in Immunology}, number = {360}, issn = {1664-3224}, doi = {10.3389/fimmu.2014.00360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120699}, year = {2014}, abstract = {Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation. Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow straight into overt tumors. These criteria would be fulfilled by CSCs. Stem cells are pluripotent, immune-privileged, and long-living, but depend on specialized niches. Thus, latent tumors may be maintained by a niche-constrained reservoir of long-living CSCs that are exempt from immunosurveillance while niche-independent and more immunogenic daughter cells are constantly eliminated. The small subpopulation of CSCs is often held responsible for tumor initiation, metastasis, and recurrence. Experimentally, this hypothesis was supported by the observation that only this subset can propagate tumors in non-obese diabetic/scid mice, which lack T and B cells. Yet, the concept was challenged when an unexpectedly large proportion of melanoma cells were found to be capable of seeding complex tumors in mice which further lack NK cells. Moreover, the link between stem cell-like properties and tumorigenicity was not sustained in these highly immunodeficient animals. In humans, however, tumor-propagating cells must also escape from immune-mediated destruction. The ability to persist and to initiate neoplastic growth in the presence of immunosurveillance - which would be lost in a maximally immunodeficient animal model - could hence be a decisive criterion for CSCs. Consequently, integrating scientific insight from stem cell biology and tumor immunology to build a new concept of "CSC immunology" may help to reconcile the outlined contradictions and to improve our understanding of tumorigenesis.}, language = {en} } @phdthesis{Wang2011, author = {Wang, Huiqiang}, title = {Enhanced Replication of Vaccinia Virus GLV-1h68 in Cancer Stem-like Cells of Human Breast Cancer Cell Preparations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64750}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {There is more and more evidence for the cancer stem cell hypothesis which believes that cancers are driven by a cellular subcomponent that has stem cell properties which is self-renewal, tumorigenicity and multilineage differentiation capacity. Cancer stem cells have been connected to the initiation of tumors and are even found to be responsible for relapses after apparently curative therapies have been undertaken. This hypothesis changes our conceptual approach of oncogenesis and shall have implications in breast cancer prevention, detection and treatment, especially in metastatic breast cancer for which no curative treatment exists. Given the specific stem cell features, novel therapeutic pathways can be targeted. Since the value of vaccinia virus as a vaccination virus against smallpox was discovered by E. Jenner at 18th century, it plays an important role in human medicine and molecular biology. After smallpox was successfully eradicated, vaccinia virus is mainly used as a viral vector in molecular biology and increasingly in cancer therapy. The outstanding capability to specifically target and destroy cancer cells makes it a perfect agent for oncolytic virotherapy. Furthermore, the virus can easily be modified by inserting genes which encode therapeutic or diagnostic proteins to be expressed when a tumor is infected. The emphasis in this study was the establishment of methods for the enrichment of human breast cancer stem-like cells from cancer cell lines and characterization of those cancer stem-like cells in vitro and in vivo. Furthermore, by using the Genelux Corporation vaccinia virus strain GLV-1h68, the isolated cancer stem-like cells can be targeted not only in vitro but also in vivo more efficiently. Side-population (SP) cells within cancers and cell lines are rare cell populations known to be enriched cancer stem-like cells. In this study, we used Hoechst 33342 staining and flow cytometry to identify SP cells from the human breast cancer cell lines MCF-7 and GI-101A as models for cancer stem-like cells. Considering the cytotoxicity of Hoechst dye and the restriction of instrument, we did not carry out further studies by this method. Utilizing in vitro and in vivo experimental systems, we showed that human breast cancer cell line GI-101A with aldehyde dehydrogenase activity (ALDH) have stemlike properties. Higher ALDH activity identifies the tumorigenic cell fraction which is capable of self-renewal and of generating tumors that could recapitulate the heterogeneity of the parental tumor. Furthermore, the cells with higher ALDH activity display significant resistance to chemotherapy and ionizing radiation, which proves their stem-like properties again. The cells which have higher ALDH activity also are more invasive compared to cells which have lower ALDH activity, which connects the cancer stem-like cells with cancer metastases. By analyzing the popular human breast cancer stem cells surface markers CD44, CD49f and CD24, it was discovered that the cells with higher ALDH activity have stronger CD44 and CD49f expression than in those cells with lower ALDH activity, which further confirms their stem-like properties. Finally, the cells with higher ALDH activity and lower ALDH activity were infected in vitro and used in virotherapy in a mouse xenograft model was performed. The results indicated that the vaccinia virus GLV-1h68 can replicate in cells with higher ALDH activity more efficiently than cells with lower ALDH activity. GLV-1h68 also can selectively target and eradicate the xenograft tumors which were derived from cells with higher ALDH activity. The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastases. EMT was induced in immortalized human mammary epithelial cells (HMLEs) and in GI-101A cells, which results in the acquisition of mesenchymal traits and in the expression of stem cell markers. Furthermore, the EMT-induced GI-101A cells showed resistance to chemotherapy and invasion capacity. CD44+/CD24- cells were enriched during the EMT induction. Following flow cytometry sorting by using CD44, CD24 and ESA surface marker, the sorted cells were tested in a mouse model regarding tumorigenicity. Unexpectedly, we found that CD44+/CD24+/ESA+ cells could initiate tumors more efficiently rather than CD44+/CD24-/ESA+ and other fractions in EMTinduced GI-101A cells. We also infected the CD44+/CD24+/ESA+ and CD44+/CD24- /ESA+ cells in vitro and performed virotherapy in a mouse xenograft model. The results indicated that the vaccinia virus GLV-1h68 is able to replicate in CD44+/CD24+/ESA+ cells more efficiently than in CD44+/CD24-/ESA+ cells. GLV-1h68 was also capable to selectively target and eradicate the xenograft tumors which derived from CD44+/CD24+/ESA+ cells. Moreover, CD44- cells have much lower tumorigenicity in the mouse model and CD44- cells derived-tumors are not responsive to vaccinia virotherapy. In summary, we have successfully established an in vitro and in vivo system for the identification, characterization and isolation of cancer stem-like cells from the human breast cancer cell line GI-101A by using the ALDEFLUOR assay. The vaccinia virus GLV-1h68 was able to efficiently target and eradicate the higher ALDH activity cells and tumors derived from those cells. Although contrary to the current assumption, CD44+/CD24+/ESA+ cells in the EMT-induced GI-101A cell line showed stem-like properties and GLV-1h68 was able to efficiently target and eradicate the CD44+/CD24+/ESA+ cells and tumors which derived from those cells. Finally, improved understanding of cancer stem cells may have tremendous relevance for how cancer should be treated. It is menacing that cancer stem cells are resistant to almost all anti-tumor approaches which have already been established for the treatment of metastatic diseases such as ionizing radiation, hormonal therapy, chemotherapy, and small molecular inhibitors. Therefore, it is promising that our results suggest that these cancer stem cells may be susceptible to treatment with oncolytic vaccinia virus.}, subject = {Vaccinia Virus}, language = {en} }