@phdthesis{Reil2023, author = {Reil, Lucy Honor}, title = {The role of WASH complex subunit Strumpellin in platelet function}, doi = {10.25972/OPUS-24207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Strumpellin is a member of the highly conserved pentameric WASH complex, which stimulates the Arp2/3 complex on endosomes and induces the formation of a branched actin network. The WASH complex is involved in the formation and stabilisation of endosomal retrieval subdomains and transport carriers, into which selected proteins are packaged and subsequently transported to their respective cellular destination, e.g. the plasma membrane. Up until now, the role of Strumpellin in platelet function and endosomal trafficking has not been researched. In order to examine its role, a conditional knockout mouse line was generated, which specifically lacked Strumpellin in megakaryocytes and platelets. Conditional knockout of Strumpellin resulted in only a mild platelet phenotype. Loss of Strumpellin led to a decreased abundance of the αIIbβ3 integrin in platelets, including a reduced αIIbβ3 surface expression by approximately 20\% and an impaired αIIbβ3 activation after platelet activation. The reduced surface expression of αIIbβ3 was also detected in megakaryocytes. The expression of other platelet surface glycoproteins was not affected. Platelet count, size and morphology remained unaltered. The reduction of αIIbβ3 expression in platelets resulted in a reduced fibrinogen binding capacity after platelet activation. However, fibrinogen uptake under resting conditions, although slightly delayed, as well as overall fibrinogen content in Strumpellin-deficient platelets were comparable to controls. Most notably, reduced αIIbβ3 expression did not lead to any platelet spreading and aggregation defects in vitro. Furthermore, reduced WASH1 protein levels were detected in the absence of Strumpellin. In conclusion, loss of Strumpellin does not impair platelet function, at least not in vitro. However, the data demonstrates that Strumpellin plays a role in selectively regulating αIIbβ3 surface expression. As a member of the WASH complex, Strumpellin may regulate αIIbβ3 recycling back to the platelet surface. Furthermore, residual WASH complex subunits may still assemble and partially function in the absence of Strumpellin, which could explain the only 20\% decrease in αIIbβ3 surface expression. Nonetheless, the exact mechanism still remains unclear.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} }