@article{ReinersSobrinoKuenzer2023, author = {Reiners, Philipp and Sobrino, Jos{\´e} and Kuenzer, Claudia}, title = {Satellite-derived land surface temperature dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311120}, year = {2023}, abstract = {Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites.}, language = {en} } @article{KunzUllmannKneiseletal.2023, author = {Kunz, Julius and Ullmann, T. and Kneisel, C. and Baumhauer, R.}, title = {Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada}, series = {Arctic, Antarctic, and Alpine Research}, volume = {55}, journal = {Arctic, Antarctic, and Alpine Research}, number = {1}, issn = {1523-0430}, doi = {10.1080/15230430.2023.2167358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350147}, year = {2023}, abstract = {The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle-based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs.}, language = {en} } @article{ReinermannAsamGessneretal.2023, author = {Reinermann, Sophie and Asam, Sarah and Gessner, Ursula and Ullmann, Tobias and Kuenzer, Claudia}, title = {Multi-annual grassland mowing dynamics in Germany}, series = {Frontiers in Environmental Science}, volume = {11}, journal = {Frontiers in Environmental Science}, issn = {2296-665X}, doi = {10.3389/fenvs.2023.1040551}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320700}, year = {2023}, abstract = {Introduction: Grasslands cover one third of the agricultural area in Germany and are mainly used for fodder production. However, grasslands fulfill many other ecosystem functions, like carbon storage, water filtration and the provision of habitats. In Germany, grasslands are mown and/or grazed multiple times during the year. The type and timing of management activities and the use intensity vary strongly, however co-determine grassland functions. Large-scale spatial information on grassland activities and use intensity in Germany is limited and not openly provided. In addition, the cause for patterns of varying mowing intensity are usually not known on a spatial scale as data on the incentives of farmers behind grassland management decisions is not available. Methods: We applied an algorithm based on a thresholding approach utilizing Sentinel-2 time series to detect grassland mowing events to investigate mowing dynamics in Germany in 2018-2021. The detected mowing events were validated with an independent dataset based on the examination of public webcam images. We analyzed spatial and temporal patterns of the mowing dynamics and relationships to climatic, topographic, soil or socio-political conditions. Results: We found that most intensively used grasslands can be found in southern/south-eastern Germany, followed by areas in northern Germany. This pattern stays the same among the investigated years, but we found variations on smaller scales. The mowing event detection shows higher accuracies in 2019 and 2020 (F1 = 0.64 and 0.63) compared to 2018 and 2021 (F1 = 0.52 and 0.50). We found a significant but weak (R2 of 0-0.13) relationship for a spatial correlation of mowing frequency and climate as well as topographic variables for the grassland areas in Germany. Further results indicate a clear value range of topographic and climatic conditions, characteristic for intensive grassland use. Extensive grassland use takes place everywhere in Germany and on the entire spectrum of topographic and climatic conditions in Germany. Natura 2000 grasslands are used less intensive but this pattern is not consistent among all sites. Discussion: Our findings on mowing dynamics and relationships to abiotic and socio-political conditions in Germany reveal important aspects of grassland management, including incentives of farmers.}, language = {en} } @phdthesis{Hoeser2022, author = {H{\"o}ser, Thorsten}, title = {Global Dynamics of the Offshore Wind Energy Sector Derived from Earth Observation Data - Deep Learning Based Object Detection Optimised with Synthetic Training Data for Offshore Wind Energy Infrastructure Extraction from Sentinel-1 Imagery}, doi = {10.25972/OPUS-29285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The expansion of renewable energies is being driven by the gradual phaseout of fossil fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for energy and, more recently, by geopolitical events. The offshore wind energy sector is on the verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA, South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date will be carried out in the upcoming decades, with thousands of offshore wind turbines being installed. In order to accompany this process globally and to provide a database for research, development and monitoring, this dissertation presents a deep learning-based approach for object detection that enables the derivation of spatiotemporal developments of offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mission. For training the deep learning models for offshore wind energy infrastructure detection, an approach is presented that makes it possible to synthetically generate remote sensing data and the necessary annotation for the supervised deep learning process. In this synthetic data generation process, expert knowledge about image content and sensor acquisition techniques is made machine-readable. Finally, extensive and highly variable training data sets are generated from this knowledge representation, with which deep learning models can learn to detect objects in real-world satellite data. The method for the synthetic generation of training data based on expert knowledge offers great potential for deep learning in Earth observation. Applications of deep learning based methods can be developed and tested faster with this procedure. Furthermore, the synthetically generated and thus controllable training data offer the possibility to interpret the learning process of the optimised deep learning models. The method developed in this dissertation to create synthetic remote sensing training data was finally used to optimise deep learning models for the global detection of offshore wind energy infrastructure. For this purpose, images of the entire global coastline from ESA's Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941 objects, which distinguish offshore wind turbines, transformer stations and offshore wind energy infrastructures under construction from each other. In addition to this spatial detection, a quarterly time series from July 2016 to June 2021 was derived for all objects. This time series reveals the start of construction, the construction phase and the time of completion with subsequent operation for each object. The derived offshore wind energy infrastructure data set provides the basis for an analysis of the development of the offshore wind energy sector from July 2016 to June 2021. For this analysis, further attributes of the detected offshore wind turbines were derived. The most important of these are the height and installed capacity of a turbine. The turbine height was calculated by a radargrammetric analysis of the previously detected Sentinel-1 signal and then used to statistically model the installed capacity. The results show that in June 2021, 8,885 offshore wind turbines with a total capacity of 40.6 GW were installed worldwide. The largest installed capacities are in the EU (15.2 GW), China (14.1 GW) and the United Kingdom (10.7 GW). From July 2016 to June 2021, China has expanded 13 GW of offshore wind energy infrastructure. The EU has installed 8 GW and the UK 5.8 GW of offshore wind energy infrastructure in the same period. This temporal analysis shows that China was the main driver of the expansion of the offshore wind energy sector in the period under investigation. The derived data set for the description of the offshore wind energy sector was made publicly available. It is thus freely accessible to all decision-makers and stakeholders involved in the development of offshore wind energy projects. Especially in the scientific context, it serves as a database that enables a wide range of investigations. Research questions regarding offshore wind turbines themselves as well as the influence of the expansion in the coming decades can be investigated. This supports the imminent and urgently needed expansion of offshore wind energy in order to promote sustainable expansion in addition to the expansion targets that have been set.}, language = {en} } @article{WehnerHuchlerFritz2022, author = {Wehner, Helena and Huchler, Katharina and Fritz, Johannes}, title = {Quantification of foraging areas for the Northern Bald Ibis (Geronticus eremita) in the northern Alpine foothills: a random forest model fitted with optical and actively sensed earth observation data}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {4}, issn = {2072-4292}, doi = {10.3390/rs14041015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262245}, year = {2022}, abstract = {The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the European LIFE program is carried out, to reintroduce a migratory population with breeding colonies in the northern and southern Alpine foothills and a common wintering area in southern Tuscany. The population meanwhile consists of about 200 individuals, with about 90\% of them carrying a GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the species in the northern Alpine foothills. To set up a species distribution model, indices describing environmental conditions were calculated from satellite images of Landsat-8, and in addition to the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed observation data, as well as climate and urbanization data. A random forest model was fitted on NBI GPS positions, which we used to identify regions with high predicted foraging suitability within the northern Alpine foothills. The model resulted in 84.5\% overall accuracy. Elevation and slope had the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The map resulting from the model predicts the highest foraging suitability for valley floors, especially of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known historic breeding sites. This is particularly noteworthy because the model only refers to foraging habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the transition zone from extensive grassland management to intensive arable farming as the northern range limit. The modeling outcome allows for defining suitable areas for further translocation and management measures in the frame of the European NBI reintroduction program. Although required in the international IUCN translocation guidelines, the use of models in the context of translocation projects is still not common and in the case of the Northern Bald Ibis not considered in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement. Our species distribution model represents a contemporary snapshot, but sustainability is essential for conservation planning, especially in times of climate change. In this regard, a further model could be optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios.}, language = {en} } @article{ReinermannGessnerAsametal.2022, author = {Reinermann, Sophie and Gessner, Ursula and Asam, Sarah and Ullmann, Tobias and Schucknecht, Anne and Kuenzer, Claudia}, title = {Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs14071647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267164}, year = {2022}, abstract = {Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3\% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84\%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3\%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany.}, language = {en} } @article{SognoKleinKuenzer2022, author = {Sogno, Patrick and Klein, Igor and Kuenzer, Claudia}, title = {Remote sensing of surface water dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {10}, issn = {2072-4292}, doi = {10.3390/rs14102475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275274}, year = {2022}, abstract = {Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution.}, language = {en} } @article{BaeMuellerFoersteretal.2022, author = {Bae, Soyeon and M{\"u}ller, J{\"o}rg and F{\"o}rster, Bernhard and Hilmers, Torben and Hochrein, Sophia and Jacobs, Martin and Leroy, Benjamin M. L. and Pretzsch, Hans and Weisser, Wolfgang W. and Mitesser, Oliver}, title = {Tracking the temporal dynamics of insect defoliation by high-resolution radar satellite data}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {1}, doi = {10.1111/2041-210X.13726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258222}, pages = {121-132}, year = {2022}, abstract = {Quantifying tree defoliation by insects over large areas is a major challenge in forest management, but it is essential in ecosystem assessments of disturbance and resistance against herbivory. However, the trajectory from leaf-flush to insect defoliation to refoliation in broadleaf trees is highly variable. Its tracking requires high temporal- and spatial-resolution data, particularly in fragmented forests. In a unique replicated field experiment manipulating gypsy moth Lymantria dispar densities in mixed-oak forests, we examined the utility of publicly accessible satellite-borne radar (Sentinel-1) to track the fine-scale temporal trajectory of defoliation. The ratio of backscatter intensity between two polarizations from radar data of the growing season constituted a canopy development index (CDI) and a normalized CDI (NCDI), which were validated by optical (Sentinel-2) and terrestrial laser scanning (TLS) data as well by intensive caterpillar sampling from canopy fogging. The CDI and NCDI strongly correlated with optical and TLS data (Spearman's ρ = 0.79 and 0.84, respectively). The ΔNCDII\(_{Defoliation(A-C)}\) significantly explained caterpillar abundance (R\(^{2}\) = 0.52). The NCDI at critical timesteps and ΔNCDI related to defoliation and refoliation well discriminated between heavily and lightly defoliated forests. We demonstrate that the high spatial and temporal resolution and the cloud independence of Sentinel-1 radar potentially enable spatially unrestricted measurements of the highly dynamic canopy herbivory. This can help monitor insect pests, improve the prediction of outbreaks and facilitate the monitoring of forest disturbance, one of the high priority Essential Biodiversity Variables, in the near future.}, language = {en} } @article{KacicKuenzer2022, author = {Kacic, Patrick and Kuenzer, Claudia}, title = {Forest biodiversity monitoring based on remotely sensed spectral diversity — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs14215363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290535}, year = {2022}, abstract = {Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts "vegetation indices", "spectral information content", and "spectral species" for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.}, language = {en} } @article{KleinCoccoUereyenetal.2022, author = {Klein, Igor and Cocco, Arturo and Uereyen, Soner and Mannu, Roberto and Floris, Ignazio and Oppelt, Natascha and Kuenzer, Claudia}, title = {Outbreak of Moroccan locust in Sardinia (Italy): a remote sensing perspective}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14236050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297232}, year = {2022}, abstract = {The Moroccan locust has been considered one of the most dangerous agricultural pests in the Mediterranean region. The economic importance of its outbreaks diminished during the second half of the 20th century due to a high degree of agricultural industrialization and other human-caused transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data between 2017 and 2021 using time-series composites and a random forest (RF) classification model. Coordinates of infested locations, altitude, and locust development stages were collected during field observation campaigns between March and July 2022 and used in this study to assess actual and previous land cover situation of these locations. Findings show that 43\% of detected locust locations were found on untilled, fallow, or uncultivated land and another 23\% within a radius of 100 m to such areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97\%). This study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide valuable information to contribute to early warning systems and decision support and thus to minimize the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are strictly related to changing human activities within transformed habitats.}, language = {en} } @article{AnsahAbuKleemannetal.2022, author = {Ansah, Christabel Edena and Abu, Itohan-Osa and Kleemann, Janina and Mahmoud, Mahmoud Ibrahim and Thiel, Michael}, title = {Environmental contamination of a biodiversity hotspot — action needed for nature conservation in the Niger Delta, Nigeria}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {21}, issn = {2071-1050}, doi = {10.3390/su142114256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297214}, year = {2022}, abstract = {The Niger Delta belongs to the largest swamp and mangrove forests in the world hosting many endemic and endangered species. Therefore, its conservation should be of highest priority. However, the Niger Delta is confronted with overexploitation, deforestation and pollution to a large extent. In particular, oil spills threaten the biodiversity, ecosystem services, and local people. Remote sensing can support the detection of spills and their potential impact when accessibility on site is difficult. We tested different vegetation indices to assess the impact of oil spills on the land cover as well as to detect accumulations (hotspots) of oil spills. We further identified which species, land cover types, and protected areas could be threatened in the Niger Delta due to oil spills. The results showed that the Enhanced Vegetation Index, the Normalized Difference Vegetation Index, and the Soil Adjusted Vegetation Index were more sensitive to the effects of oil spills on different vegetation cover than other tested vegetation indices. Forest cover was the most affected land-cover type and oil spills also occurred in protected areas. Threatened species are inhabiting the Niger Delta Swamp Forest and the Central African Mangroves that were mainly affected by oil spills and, therefore, strong conservation measures are needed even though security issues hamper the monitoring and control.}, language = {en} } @article{HaHuthBachoferetal.2022, author = {Ha, Tuyen V. and Huth, Juliane and Bachofer, Felix and Kuenzer, Claudia}, title = {A review of Earth observation-based drought studies in Southeast Asia}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {15}, issn = {2072-4292}, doi = {10.3390/rs14153763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286258}, year = {2022}, abstract = {Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70\%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97\% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21\%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81\% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region.}, language = {en} } @article{RiyasSyedKumaretal.2021, author = {Riyas, Moidu Jameela and Syed, Tajdarul Hassan and Kumar, Hrishikesh and Kuenzer, Claudia}, title = {Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using Sentinel-1 SAR data}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {8}, issn = {2072-4292}, doi = {10.3390/rs13081521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236703}, year = {2021}, abstract = {Public safety and socio-economic development of the Jharia coalfield (JCF) in India is critically dependent on precise monitoring and comprehensive understanding of coal fires, which have been burning underneath for more than a century. This study utilizes New-Small BAseline Subset (N-SBAS) technique to compute surface deformation time series for 2017-2020 to characterize the spatiotemporal dynamics of coal fires in JCF. The line-of-sight (LOS) surface deformation estimated from ascending and descending Sentinel-1 SAR data are subsequently decomposed to derive precise vertical subsidence estimates. The most prominent subsidence (~22 cm) is observed in Kusunda colliery. The subsidence regions also correspond well with the Landsat-8 based thermal anomaly map and field evidence. Subsequently, the vertical surface deformation time-series is analyzed to characterize temporal variations within the 9.5 km\(^2\) area of coal fires. Results reveal that nearly 10\% of the coal fire area is newly formed, while 73\% persisted throughout the study period. Vulnerability analyses performed in terms of the susceptibility of the population to land surface collapse demonstrate that Tisra, Chhatatanr, and Sijua are the most vulnerable towns. Our results provide critical information for developing early warning systems and remediation strategies.}, language = {en} } @article{MayrKleinRutzingeretal.2021, author = {Mayr, Stefan and Klein, Igor and Rutzinger, Martin and Kuenzer, Claudia}, title = {Systematic water fraction estimation for a global and daily surface water time-series}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {14}, issn = {2072-4292}, doi = {10.3390/rs13142675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242586}, year = {2021}, abstract = {Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6\% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.}, language = {en} } @article{RokhafrouzLatifiAbkaretal.2021, author = {Rokhafrouz, Mohammad and Latifi, Hooman and Abkar, Ali A. and Wojciechowski, Tomasz and Czechlowski, Mirosław and Naieni, Ali Sadeghi and Maghsoudi, Yasser and Niedbała, Gniewko}, title = {Simplified and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat}, series = {Agriculture}, volume = {11}, journal = {Agriculture}, number = {11}, issn = {2077-0472}, doi = {10.3390/agriculture11111104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250033}, year = {2021}, abstract = {Enhancing digital and precision agriculture is currently inevitable to overcome the economic and environmental challenges of the agriculture in the 21st century. The purpose of this study was to generate and compare management zones (MZ) based on the Sentinel-2 satellite data for variable rate application of mineral nitrogen in wheat production, calculated using different remote sensing (RS)-based models under varied soil, yield and crop data availability. Three models were applied, including (1) a modified "RS- and threshold-based clustering", (2) a "hybrid-based, unsupervised clustering", in which data from different sources were combined for MZ delineation, and (3) a "RS-based, unsupervised clustering". Various data processing methods including machine learning were used in the model development. Statistical tests such as the Paired Sample T-test, Kruskal-Wallis H-test and Wilcoxon signed-rank test were applied to evaluate the final delineated MZ maps. Additionally, a procedure for improving models based on information about phenological phases and the occurrence of agricultural drought was implemented. The results showed that information on agronomy and climate enables improving and optimizing MZ delineation. The integration of prior knowledge on new climate conditions (drought) in image selection was tested for effective use of the models. Lack of this information led to the infeasibility of obtaining optimal results. Models that solely rely on remote sensing information are comparatively less expensive than hybrid models. Additionally, remote sensing-based models enable delineating MZ for fertilizer recommendations that are temporally closer to fertilization times.}, language = {en} } @article{DirscherlDietzKneiseletal.2021, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {2}, issn = {2072-4292}, doi = {10.3390/rs13020197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222998}, year = {2021}, abstract = {Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0\% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter.}, language = {en} } @article{RoesslerWittIkonenetal.2021, author = {R{\"o}ßler, Sebastian and Witt, Marius S. and Ikonen, Jaakko and Brown, Ian A. and Dietz, Andreas J.}, title = {Remote sensing of snow cover variability and its influence on the runoff of S{\´a}pmi's rivers}, series = {Geosciences}, volume = {11}, journal = {Geosciences}, number = {3}, issn = {2076-3263}, doi = {10.3390/geosciences11030130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234261}, year = {2021}, abstract = {The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR's Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM).}, language = {en} } @article{KleinOppeltKuenzer2021, author = {Klein, Igor and Oppelt, Natascha and Kuenzer, Claudia}, title = {Application of remote sensing data for locust research and management — a review}, series = {Insects}, volume = {12}, journal = {Insects}, number = {3}, issn = {2075-4450}, doi = {10.3390/insects12030233}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234090}, year = {2021}, abstract = {Recently, locust outbreaks around the world have destroyed agricultural and natural vegetation and caused massive damage endangering food security. Unusual heavy rainfalls in habitats of the desert locust (Schistocerca gregaria) and lack of monitoring due to political conflicts or inaccessibility of those habitats lead to massive desert locust outbreaks and swarms migrating over the Arabian Peninsula, East Africa, India and Pakistan. At the same time, swarms of the Moroccan locust (Dociostaurus maroccanus) in some Central Asian countries and swarms of the Italian locust (Calliptamus italicus) in Russia and China destroyed crops despite developed and ongoing monitoring and control measurements. These recent events underline that the risk and damage caused by locust pests is as present as ever and affects 100 million of human lives despite technical progress in locust monitoring, prediction and control approaches. Remote sensing has become one of the most important data sources in locust management. Since the 1980s, remote sensing data and applications have accompanied many locust management activities and contributed to an improved and more effective control of locust outbreaks and plagues. Recently, open-access remote sensing data archives as well as progress in cloud computing provide unprecedented opportunity for remote sensing-based locust management and research. Additionally, unmanned aerial vehicle (UAV) systems bring up new prospects for a more effective and faster locust control. Nevertheless, the full capacity of available remote sensing applications and possibilities have not been exploited yet. This review paper provides a comprehensive and quantitative overview of international research articles focusing on remote sensing application for locust management and research. We reviewed 110 articles published over the last four decades, and categorized them into different aspects and main research topics to summarize achievements and gaps for further research and application development. The results reveal a strong focus on three species — the desert locust, the migratory locust (Locusta migratoria), and the Australian plague locust (Chortoicetes terminifera) — and corresponding regions of interest. There is still a lack of international studies for other pest species such as the Italian locust, the Moroccan locust, the Central American locust (Schistocerca piceifrons), the South American locust (Schistocerca cancellata), the brown locust (Locustana pardalina) and the red locust (Nomadacris septemfasciata). In terms of applied sensors, most studies utilized Advanced Very-High-Resolution Radiometer (AVHRR), Satellite Pour l'Observation de la Terre VEGETATION (SPOT-VGT), Moderate-Resolution Imaging Spectroradiometer (MODIS) as well as Landsat data focusing mainly on vegetation monitoring or land cover mapping. Application of geomorphological metrics as well as radar-based soil moisture data is comparably rare despite previous acknowledgement of their importance for locust outbreaks. Despite great advance and usage of available remote sensing resources, we identify several gaps and potential for future research to further improve the understanding and capacities of the use of remote sensing in supporting locust outbreak- research and management.}, language = {en} } @article{LatifiHolzwarthSkidmoreetal.2021, author = {Latifi, Hooman and Holzwarth, Stefanie and Skidmore, Andrew and Brůna, Josef and Červenka, Jaroslav and Darvishzadeh, Roshanak and Hais, Martin and Heiden, Uta and Homolov{\´a}, Lucie and Krzystek, Peter and Schneider, Thomas and Star{\´y}, Martin and Wang, Tiejun and M{\"u}ller, J{\"o}rg and Heurich, Marco}, title = {A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The 'Data pool initiative for the Bohemian Forest Ecosystem'}, series = {Methods in Ecology and Evolution}, volume = {12}, journal = {Methods in Ecology and Evolution}, number = {11}, doi = {10.1111/2041-210X.13695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262743}, pages = {2073-2083}, year = {2021}, abstract = {Effects of climate change-induced events on forest ecosystem dynamics of composition, function and structure call for increased long-term, interdisciplinary and integrated research on biodiversity indicators, in particular within strictly protected areas with extensive non-intervention zones. The long-established concept of forest supersites generally relies on long-term funds from national agencies and goes beyond the logistic and financial capabilities of state- or region-wide protected area administrations, universities and research institutes. We introduce the concept of data pools as a smaller-scale, user-driven and reasonable alternative to co-develop remote sensing and forest ecosystem science to validated products, biodiversity indicators and management plans. We demonstrate this concept with the Bohemian Forest Ecosystem Data Pool, which has been established as an interdisciplinary, international data pool within the strictly protected Bavarian Forest and Šumava National Parks and currently comprises 10 active partners. We demonstrate how the structure and impact of the data pool differs from comparable cases. We assessed the international influence and visibility of the data pool with the help of a systematic literature search and a brief analysis of the results. Results primarily suggest an increase in the impact and visibility of published material during the life span of the data pool, with highest visibilities achieved by research conducted on leaf traits, vegetation phenology and 3D-based forest inventory. We conclude that the data pool results in an efficient contribution to the concept of global biodiversity observatory by evolving towards a training platform, functioning as a pool of data and algorithms, directly communicating with management for implementation and providing test fields for feasibility studies on earth observation missions.}, language = {en} } @article{DirscherlDietzKneiseletal.2020, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {Automated mapping of Antarctic supraglacial lakes using a Machine Learning approach}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203735}, year = {2020}, abstract = {Supraglacial lakes can have considerable impact on ice sheet mass balance and global sea-level-rise through ice shelf fracturing and subsequent glacier speedup. In Antarctica, the distribution and temporal development of supraglacial lakes as well as their potential contribution to increased ice mass loss remains largely unknown, requiring a detailed mapping of the Antarctic surface hydrological network. In this study, we employ a Machine Learning algorithm trained on Sentinel-2 and auxiliary TanDEM-X topographic data for automated mapping of Antarctic supraglacial lakes. To ensure the spatio-temporal transferability of our method, a Random Forest was trained on 14 training regions and applied over eight spatially independent test regions distributed across the whole Antarctic continent. In addition, we employed our workflow for large-scale application over Amery Ice Shelf where we calculated interannual supraglacial lake dynamics between 2017 and 2020 at full ice shelf coverage. To validate our supraglacial lake detection algorithm, we randomly created point samples over our classification results and compared them to Sentinel-2 imagery. The point comparisons were evaluated using a confusion matrix for calculation of selected accuracy metrics. Our analysis revealed wide-spread supraglacial lake occurrence in all three Antarctic regions. For the first time, we identified supraglacial meltwater features on Abbott, Hull and Cosgrove Ice Shelves in West Antarctica as well as for the entire Amery Ice Shelf for years 2017-2020. Over Amery Ice Shelf, maximum lake extent varied strongly between the years with the 2019 melt season characterized by the largest areal coverage of supraglacial lakes (~763 km\(^2\)). The accuracy assessment over the test regions revealed an average Kappa coefficient of 0.86 where the largest value of Kappa reached 0.98 over George VI Ice Shelf. Future developments will involve the generation of circum-Antarctic supraglacial lake mapping products as well as their use for further methodological developments using Sentinel-1 SAR data in order to characterize intraannual supraglacial meltwater dynamics also during polar night and independent of meteorological conditions. In summary, the implementation of the Random Forest classifier enabled the development of the first automated mapping method applied to Sentinel-2 data distributed across all three Antarctic regions.}, language = {en} } @article{HolzwarthThonfeldAbdullahietal.2020, author = {Holzwarth, Stefanie and Thonfeld, Frank and Abdullahi, Sahra and Asam, Sarah and Da Ponte Canova, Emmanuel and Gessner, Ursula and Huth, Juliane and Kraus, Tanja and Leutner, Benjamin and Kuenzer, Claudia}, title = {Earth Observation based monitoring of forests in Germany: a review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs12213570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216334}, year = {2020}, abstract = {Forests in Germany cover around 11.4 million hectares and, thus, a share of 32\% of Germany's surface area. Therefore, forests shape the character of the country's cultural landscape. Germany's forests fulfil a variety of functions for nature and society, and also play an important role in the context of climate levelling. Climate change, manifested via rising temperatures and current weather extremes, has a negative impact on the health and development of forests. Within the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass reproduction of bark beetles have all seriously affected Germany's forests. Facing the current dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve forests in Germany, along with their diversity and productivity, is an indispensable task for the government. Several German ministries have and plan to initiate measures supporting forest health. Quantitative data is one means for sound decision-making to ensure the monitoring of the forest and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, such as the federal forest inventory, the national crown condition survey, and the national forest soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be expanded with the help of a satellite-based earth observation. In this review, we analysed and categorized all research studies published in the last 20 years that focus on the remote sensing of forests in Germany. For this study, 166 citation indexed research publications have been thoroughly analysed with respect to publication frequency, location of studies undertaken, spatial and temporal scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall outcomes, allowing us to identify major research and geoinformation product gaps.}, language = {en} } @article{SognoTraidlHoffmannKuenzer2020, author = {Sogno, Patrick and Traidl-Hoffmann, Claudia and Kuenzer, Claudia}, title = {Earth Observation data supporting non-communicable disease research: a review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {16}, issn = {2072-4292}, doi = {10.3390/rs12162541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211113}, year = {2020}, abstract = {A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common — environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries' economy due to healthcare costs and missing work force. Additionally, they affect the individual's immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases.}, language = {en} } @article{RemelgadoSafiWegmann2020, author = {Remelgado, Ruben and Safi, Kamran and Wegmann, Martin}, title = {From ecology to remote sensing: using animals to map land cover}, series = {Remote Sensing in Ecology and Conservation}, volume = {6}, journal = {Remote Sensing in Ecology and Conservation}, number = {1}, doi = {10.1002/rse2.126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225200}, pages = {93-104}, year = {2020}, abstract = {Land cover is a key variable in monitoring applications and new processing technologies made deriving this information easier. Yet, classification algorithms remain dependent on samples collected on the field and field campaigns are limited by financial, infrastructural and political boundaries. Here, animal tracking data could be an asset. Looking at the land cover dependencies of animal behaviour, we can obtain land cover samples over places that are difficult to access. Following this premise, we evaluated the potential of animal movement data to map land cover. Specifically, we used 13 White Storks (Cicona cicona) individuals of the same population to map agriculture within three test regions distributed along their migratory track. The White Stork has adapted to foraging over agricultural lands, making it an ideal source of samples to map this land use. We applied a presence-absence modelling approach over a Normalized Difference Vegetation Index (NDVI) time series and validated our classifications, with high-resolution land cover information. Our results suggest White Stork movement is useful to map agriculture, however, we identified some limitations. We achieved high accuracies (F1-scores > 0.8) for two test regions, but observed poor results over one region. This can be explained by differences in land management practices. The animals preferred agriculture in every test region, but our data showed a biased distribution of training samples between irrigated and non-irrigated land. When both options occurred, the animals disregarded non-irrigated land leading to its misclassification as non-agriculture. Additionally, we found difference between the GPS observation dates and the harvest times for non-irrigated crops. Given the White Stork takes advantage of managed land to search for prey, the inactivity of these fields was the likely culprit of their underrepresentation. Including more species attracted to agriculture - with other land-use dependencies and observation times - can contribute to better results in similar applications.}, language = {en} } @article{MayrKuenzerGessneretal.2019, author = {Mayr, Stefan and Kuenzer, Claudia and Gessner, Ursula and Klein, Igor and Rutzinger, Martin}, title = {Validation of earth observation time-series: a review for large-area and temporally dense land surface products}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {22}, issn = {2072-4292}, doi = {10.3390/rs11222616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193202}, year = {2019}, abstract = {Large-area remote sensing time-series offer unique features for the extensive investigation of our environment. Since various error sources in the acquisition chain of datasets exist, only properly validated results can be of value for research and downstream decision processes. This review presents an overview of validation approaches concerning temporally dense time-series of land surface geo-information products that cover the continental to global scale. Categorization according to utilized validation data revealed that product intercomparisons and comparison to reference data are the conventional validation methods. The reviewed studies are mainly based on optical sensors and orientated towards global coverage, with vegetation-related variables as the focus. Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land surface variables. The hereby corresponding validation efforts show only minor methodological diversification in the past two decades. To sustain comprehensive and standardized validation efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences between measurement and the true state has to be maintained. The promotion of novel approaches can, on the other hand, prove beneficial for various downstream applications, although typically only theoretical uncertainties are provided.}, language = {en} } @article{LatifiHeurich2019, author = {Latifi, Hooman and Heurich, Marco}, title = {Multi-scale remote sensing-assisted forest inventory: a glimpse of the state-of-the-art and future prospects}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs11111260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197358}, year = {2019}, abstract = {Advances in remote inventory and analysis of forest resources during the last decade have reached a level to be now considered as a crucial complement, if not a surrogate, to the long-existing field-based methods. This is mostly reflected in not only the use of multiple-band new active and passive remote sensing data for forest inventory, but also in the methodic and algorithmic developments and/or adoptions that aim at maximizing the predictive or calibration performances, thereby minimizing both random and systematic errors, in particular for multi-scale spatial domains. With this in mind, this editorial note wraps up the recently-published Remote Sensing special issue "Remote Sensing-Based Forest Inventories from Landscape to Global Scale", which hosted a set of state-of-the-art experiments on remotely sensed inventory of forest resources conducted by a number of prominent researchers worldwide.}, language = {en} } @article{UereyenKuenzer2019, author = {Uereyen, Soner and Kuenzer, Claudia}, title = {A review of earth observation-based analyses for major river basins}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {24}, issn = {2072-4292}, doi = {10.3390/rs11242951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193849}, pages = {2951}, year = {2019}, abstract = {Regardless of political boundaries, river basins are a functional unit of the Earth's land surface and provide an abundance of resources for the environment and humans. They supply livelihoods supported by the typical characteristics of large river basins, such as the provision of freshwater, irrigation water, and transport opportunities. At the same time, they are impacted i.e., by human-induced environmental changes, boundary conflicts, and upstream-downstream inequalities. In the framework of water resource management, monitoring of river basins is therefore of high importance, in particular for researchers, stake-holders and decision-makers. However, land surface and surface water properties of many major river basins remain largely unmonitored at basin scale. Several inventories exist, yet consistent spatial databases describing the status of major river basins at global scale are lacking. Here, Earth observation (EO) is a potential source of spatial information providing large-scale data on the status of land surface properties. This review provides a comprehensive overview of existing research articles analyzing major river basins primarily using EO. Furthermore, this review proposes to exploit EO data together with relevant open global-scale geodata to establish a database and to enable consistent spatial analyses and evaluate past and current states of major river basins.}, language = {en} } @article{LauschBorgBumbergeretal.2018, author = {Lausch, Angela and Borg, Erik and Bumberger, Jan and Dietrich, Peter and Heurich, Marco and Huth, Andreas and Jung, Andr{\´a}s and Klenke, Reinhard and Knapp, Sonja and Mollenhauer, Hannes and Paasche, Hendrik and Paulheim, Heiko and Pause, Marion and Schweitzer, Christian and Schmulius, Christiane and Settele, Josef and Skidmore, Andrew K. and Wegmann, Martin and Zacharias, Steffen and Kirsten, Toralf and Schaepman, Michael E.}, title = {Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs10071120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197691}, pages = {1120}, year = {2018}, abstract = {Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support.}, language = {en} } @article{KnauerGessnerFensholtetal.2017, author = {Knauer, Kim and Gessner, Ursula and Fensholt, Rasmus and Forkuor, Gerald and Kuenzer, Claudia}, title = {Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment}, series = {Remote Sensing}, volume = {9}, journal = {Remote Sensing}, number = {2}, doi = {10.3390/rs9020132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171905}, year = {2017}, abstract = {Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92\% (2001), 91\% (2007), and 91\% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91\% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future.}, language = {en} } @article{RichardAbdelRahmanSubramanianetal.2017, author = {Richard, Kyalo and Abdel-Rahman, Elfatih M. and Subramanian, Sevgan and Nyasani, Johnson O. and Thiel, Michael and Jozani, Hosein and Borgemeister, Christian and Landmann, Tobias}, title = {Maize cropping systems mapping using RapidEye observations in agro-ecological landscapes in Kenya}, series = {Sensors}, volume = {17}, journal = {Sensors}, number = {11}, doi = {10.3390/s17112537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173285}, year = {2017}, abstract = {Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93\% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85\%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.}, language = {en} } @article{WalzWegmannLeutneretal.2015, author = {Walz, Yvonne and Wegmann, Martin and Leutner, Benjamin and Dech, Stefan and Vounatsou, Penelope and N'Goran, Eli{\´e}zer K. and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling}, series = {Geospatial Health}, volume = {10}, journal = {Geospatial Health}, number = {2}, doi = {10.4081/gh.2015.398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126148}, pages = {398}, year = {2015}, abstract = {Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in C{\^o}te d'Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70\% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.}, language = {en} } @article{WalzWegmannDechetal.2015, author = {Walz, Yvonne and Wegmann, Martin and Dech, Stefan and Vounastou, Penelope and Poda, Jean-Noel and N'Goran, Eli{\´e}zer K. and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {11}, doi = {10.1371/journal.pntd.0004217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125845}, pages = {e0004217}, year = {2015}, abstract = {Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in C{\^o}te d'Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of C{\^o}te d'Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.}, language = {en} } @article{WalzWegmannDechetal.2015, author = {Walz, Yvonne and Wegmann, Martin and Dech, Stefan and Raso, Giovanna and Utzinger, J{\"u}rg}, title = {Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook}, series = {Parasites \& Vectors}, volume = {8}, journal = {Parasites \& Vectors}, number = {163}, doi = {10.1186/s13071-015-0732-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148778}, year = {2015}, abstract = {Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.}, language = {en} } @article{WohlfartWegmannLeimgruber2014, author = {Wohlfart, Christian and Wegmann, Martin and Leimgruber, Peter}, title = {Mapping threatened dry deciduous dipterocarp forest in South-east Asia for conservation management}, series = {Tropical Conservation Science}, volume = {7}, journal = {Tropical Conservation Science}, number = {4}, issn = {1940-0829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117782}, pages = {597-613}, year = {2014}, abstract = {Habitat loss is the primary reason for species extinction, making habitat conservation a critical strategy for maintaining global biodiversity. Major habitat types, such as lowland tropical evergreen forests or mangrove forests, are already well represented in many conservation priorities, while others are underrepresented. This is particularly true for dry deciduous dipterocarp forests (DDF), a key forest type in Asia that extends from the tropical to the subtropical regions in South-east Asia (SE Asia), where high temperatures and pronounced seasonal precipitation patterns are predominant. DDF are a unique forest ecosystem type harboring a wide range of important and endemic species and need to be adequately represented in global biodiversity conservation strategies. One of the greatest challenges in DDF conservation is the lack of detailed and accurate maps of their distribution due to inaccurate open-canopy seasonal forest mapping methods. Conventional land cover maps therefore tend to perform inadequately with DDF. Our study accurately delineates DDF on a continental scale based on remote sensing approaches by integrating the strong, characteristic seasonality of DDF. We also determine the current conservation status of DDF throughout SE Asia. We chose SE Asia for our research because its remaining DDF are extensive in some areas but are currently degrading and under increasing pressure from significant socio-economic changes throughout the region. Phenological indices, derived from MODIS vegetation index time series, served as input variables for a Random Forest classifier and were used to predict the spatial distribution of DDF. The resulting continuous fields maps of DDF had accuracies ranging from R-2 = 0.56 to 0.78. We identified three hotspots in SE Asia with a total area of 156,000 km(2), and found Myanmar to have more remaining DDF than the countries in SE Asia. Our approach proved to be a reliable method for mapping DDF and other seasonally influenced ecosystems on continental and regional scales, and is very valuable for conservation management in this region.}, language = {en} } @phdthesis{Walz2014, author = {Walz, Yvonne}, title = {Remote sensing for disease risk profiling: a spatial analysis of schistosomiasis in West Africa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Global environmental change leads to the emergence of new human health risks. As a consequence, transmission opportunities of environment-related diseases are transformed and human infection with new emerging pathogens increase. The main motivation for this study is the considerable demand for disease surveillance and monitoring in relation to dynamic environmental drivers. Remote sensing (RS) data belong to the key data sources for environmental modelling due to their capabilities to deliver spatially continuous information repeatedly for large areas with an ecologically adequate spatial resolution. A major research gap as identified by this study is the disregard of the spatial mismatch inherent in current modelling approaches of profiling disease risk using remote sensing data. Typically, epidemiological data are aggregated at school or village level. However, these point data do neither represent the spatial distribution of habitats, where disease-related species find their suitable environmental conditions, nor the place, where infection has occurred. As a consequence, the prevalence data and remotely sensed environmental variables, which aim to characterise the habitat of disease-related species, are spatially disjunct. The main objective of this study is to improve RS-based disease risk models by incorporating the ecological and spatial context of disease transmission. Exemplified by the analysis of the human schistosomiasis disease in West Africa, this objective includes the quantification of the impact of scales and ecological regions on model performance. In this study, the conditions that modify the transmission of schistosomiasis are reviewed in detail. A conceptual underpinning of the linkages between geographical RS measures, disease transmission ecology, and epidemiological survey data is developed. During a field-based analysis, environmental suitability for schistosomiasis transmission was assessed on the ground, which is then quantified by a habitat suitability index (HSI) and applied to RS data. This conceptual model of environmental suitability is refined by the development of a hierarchical model approach that statistically links school-based disease prevalence with the ecologically relevant measurements of RS data. The statistical models of schistosomiasis risk are derived from two different algorithms; the Random Forest and the partial least squares regression (PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore, varying buffer extents are analysed around school-based measurements. Three distinctive sites of Burkina Faso and C{\^o}te d'Ivoire are specifically modelled to represent a gradient of ecozones from dry savannah to tropical rainforest including flat and mountainous regions. The model results reveal the applicability of RS data to spatially delineate and quantitatively evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-temporal derivation of water bodies and the assessment of their riparian vegetation coverage based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation data and water surface temperature are constraint in their ability to characterise habitat conditions for disease-related parasites and freshwater snail species. With increasing buffer extent observed around the school location, the performance of statistical models increases, improving the prediction of transmission risk. The most important RS variables identified to model schistosomiasis risk are the measure of distance to water bodies, topographic variables, and land surface temperature (LST). However, each ecological region requires a different set of RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical model approach is its superior performance to explain the spatial risk of schistosomiasis. Overall, this study stresses the key importance of considering the ecological and spatial context for disease risk profiling and demonstrates the potential of RS data. The methodological approach of this study contributes substantially to provide more accurate and relevant geoinformation, which supports an efficient planning and decision-making within the public health sector.}, subject = {Westafrika}, language = {en} } @phdthesis{Fritsch2013, author = {Fritsch, Sebastian}, title = {Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin: derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87939}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Irrigated agriculture in the Khorezm region in the arid inner Aral Sea Basin faces enormous challenges due to a legacy of cotton monoculture and non-sustainable water use. Regional crop growth monitoring and yield estimation continuously gain in importance, especially with regard to climate change and food security issues. Remote sensing is the ideal tool for regional-scale analysis, especially in regions where ground-truth data collection is difficult and data availability is scarce. New satellite systems promise higher spatial and temporal resolutions. So-called light use efficiency (LUE) models are based on the fraction of photosynthetic active radiation absorbed by vegetation (FPAR), a biophysical parameter that can be derived from satellite measurements. The general objective of this thesis was to use satellite data, in conjunction with an adapted LUE model, for inferring crop yield of cotton and rice at field (6.5 m) and regional (250 m) scale for multiple years (2003-2009), in order to assess crop yield variations in the study area. Intensive field measurements of FPAR were conducted in the Khorezm region during the growing season 2009. RapidEye imagery was acquired approximately bi-weekly during this time. The normalized difference vegetation index (NDVI) was calculated for all images. Linear regression between image-based NDVI and field-based FPAR was conducted. The analyses resulted in high correlations, and the resulting regression equations were used to generate time series of FPAR at the RapidEye level. RapidEye-based FPAR was subsequently aggregated to the MODIS scale and used to validate the existing MODIS FPAR product. This step was carried out to evaluate the applicability of MODIS FPAR for regional vegetation monitoring. The validation revealed that the MODIS product generally overestimates RapidEye FPAR by about 6 to 15 \%. Mixture of crop types was found to be a problem at the 1 km scale, but less severe at the 250 m scale. Consequently, high resolution FPAR was used to calibrate 8-day, 250 m MODIS NDVI data, this time by linear regression of RapidEye-based FPAR against MODIS-based NDVI. The established FPAR datasets, for both RapidEye and MODIS, were subsequently assimilated into a LUE model as the driving variable. This model operated at both satellite scales, and both required an estimation of further parameters like the photosynthetic active radiation (PAR) or the actual light use efficiency (LUEact). The latter is influenced by crop stress factors like temperature or water stress, which were taken account of in the model. Water stress was especially important, and calculated via the ratio of the actual (ETact) to the potential, crop-specific evapotranspiration (ETc). Results showed that water stress typically occurred between the beginning of May and mid-September and beginning of May and end of July for cotton and rice crops, respectively. The mean water stress showed only minor differences between years. Exceptions occurred in 2008 and 2009, where the mean water stress was higher and lower, respectively. In 2008, this was likely caused by generally reduced water availability in the whole region. Model estimations were evaluated using field-based harvest information (RapidEye) and statistical information at district level (MODIS). The results showed that the model at both the RapidEye and the MODIS scale can estimate regional crop yield with acceptable accuracy. The RMSE for the RapidEye scale amounted to 29.1 \% for cotton and 30.4 \% for rice, respectively. At the MODIS scale, depending on the year and evaluated at Oblast level, the RMSE ranged from 10.5 \% to 23.8 \% for cotton and from -0.4 \% to -19.4 \% for rice. Altogether, the RapidEye scale model slightly underestimated cotton (bias = 0.22) and rice yield (bias = 0.11). The MODIS-scale model, on the other hand, also underestimated official rice yield (bias from 0.01 to 0.87), but overestimated official cotton yield (bias from -0.28 to -0.6). Evaluation of the MODIS scale revealed that predictions were very accurate for some districts, but less for others. The produced crop yield maps indicated that crop yield generally decreases with distance to the river. The lowest yields can be found in the southern districts, close to the desert. From a temporal point of view, there were areas characterized by low crop yields over the span of the seven years investigated. The study at hand showed that light use efficiency-based modeling, based on remote sensing data, is a viable way for regional crop yield prediction. The found accuracies were good within the boundaries of related research. From a methodological viewpoint, the work carried out made several improvements to the existing LUE models reported in the literature, e.g. the calibration of FPAR for the study region using in situ and high resolution RapidEye imagery and the incorporation of crop-specific water stress in the calculation.}, subject = {Fernerkundung}, language = {en} } @misc{Knauer2011, type = {Master Thesis}, author = {Knauer, Kim}, title = {Monitoring ecosystem health of Fynbos remnant vegetation in the City of Cape Town using remote sensing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92495}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Increasing urbanisation is one of the biggest pressures to vegetation in the City of Cape Town. The growth of the city dramatically reduced the area under indigenous Fynbos vegetation, which remains in isolated fragments. These are subject to a number of threats including atmospheric deposition, atypical fire cycles and invasion by exotic plant and animal species. Especially the Port Jackson willow (Acacia saligna) extensively suppresses the indigenous Fynbos vegetation with its rapid growth. The main objective of this study was to investigate indicators for a quick and early prediction of the health of the remaining Fynbos fragments in the City of Cape Town with help of remote sensing. First, the productivity of the vegetation in response to rainfall was determined. For this purpose, the Enhanced Vegetation Index (EVI), derived from Terra MODIS data with a spatial resolution of 250m, and precipitation data of 19 rainfall stations for the period from 2000 till 2008 were used. Within the scope of a flexible regression between the EVI data and the precipitation data, different lags of the vegetation response to rainfall were analysed. Furthermore, residual trends (RESTREND) were calculated, which result from the difference between observed EVI and the one predicted by precipitation. Negative trends may suggest a degradation of the habitats. In addition, the so-called Rain-use Efficiency (RUE) was tested in this context. It is defined as the ratio between net primary production (NPP) - represented by the annual sum of EVI - and the annual rainfall sum. These indicators were analysed for their suitability to determine the health of the indigenous Fynbos vegetation. Furthermore, the degree of dispersal of invasive species especially the Acacia saligna was investigated. With the specific characteristics of the tested indicators and the spectral signature of Acacia saligna, i.e. its unique reflectance over the course of the year, the dispersal was estimated. Since the growth of invasive species dramatically reduces the biodiversity of the fragments, their presence is an important factor for the condition of ecosystem health. This work focused on 11 test sites with an average size of 200ha, distributed over the whole area of the City of Cape Town. Five of these fragments are under conservation and the others shall be protected in the near future, too, which makes them of special interest. In January 2010, fieldwork was undertaken in order to investigate the state and composition of the local vegetation. The results show promising indicators for the assessment of ecosystem health. The coefficients of determination of the EVI-rainfall regression for Fynbos are minor, because the reaction of this vegetation type to rainfall is considerably lower than the one of the invasive species. Thus, a good distinction between indigenous and alien vegetation is possible on the basis of this regression. On the other hand, the RESTREND method, for which the regression forms the basis, is only of limited use, since the significance of these trends is not given for Fynbos vegetation. Furthermore, the RUE has considerable potential for the assessment of ecosystem health in the study area. The Port Jackson willow has an explicitly higher EVI than the Fynbos vegetation and thus its RUE is more efficient for a similar amount of rainfall. However, it has to be used with caution, because local and temporal variability cannot be extinguished in the study area over the rather short MODIS time series. These results display that the interpretation of the indicators has to be conducted differently from the literature, because the element of invasive species was not considered in most of the previous papers. An increase in productivity is not necessarily equivalent with an improvement in health of the fragment, but can indicate a dispersal of Acacia saligna. This shows the general problem of the term 'degradation' which in most publications so far is only measured by productivity and other factors like invasive species are disregarded. On the basis of the EVI-rainfall regression and statistical measures of the EVI, the distribution of invasive species could be delineated. Generally, a strong invasion of the Port Jackson willow was discovered on the test sites. The results display that a reasoned and sustainable management of the fragments is essential in order to prevent the suppression of the indigenous Fynbos vegetation by Acacia saligna. For this purpose, remote sensing can give an indication which areas changed so that specific field surveys can be undertaken and subsequent management measures can be determined.}, subject = {remote sensing}, language = {en} } @phdthesis{NoellieAhouRUETH2010, author = {Noellie Ahou RUETH, geb. YAO}, title = {Mapping Bushfire Distribution and Burn Severity in West Africa Using Remote Sensing Observations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Fire has long been considered to be the main ecological factor explaining the origin and maintenance of West African savannas. It has a very high occurrence in these savannas due to high human pressure caused by strong demographic growth and, concomitantly, is used to transform natural savannas into farmland and is also used as a provider of energy. This study was carried out with the support of the BIOTA project funded by the German ministry for Research and Education. The objective of this study is to establish the spatial and temporal distribution of bushfires during a long observation period from 2000 to 2009 as well as to assess fire impact on vegetation through mapping of the burn severity; based on remote sensing and field data collections. Remote sensing was used for this study because of the advantages that it offers in collecting data for long time periods and on different scales. In this case, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument at 1km resolution is used to assess active fires, and understand the seasonality of fire, its occurrence and its frequency within the vegetation types on a regional scale. Landsat ETM+ imagery at 30 m and field data collections were used to define the characteristics of burn severity related to the biomass loss on a local scale. At a regional scale, the occurrence of fires and rainfall per month correlated very well (R2 = 0.951, r = -0.878, P < 0.01), which shows that the lower the amount of rainfall, the higher the fire occurrence and vice versa. In the dry season, four fire seasons were determined on a regional scale, namely very early fires, which announce the beginning of the fires, early and late fires making up the peak of fire in December/January and very late fires showing the end of the fire season and the beginning of the rainy season. Considerable fire activity was shown to take place in the vegetation zones between the Forest and the Sahel areas. Within these zones, parts of the Sudano-Guinean and the Guinean zones showed a high pixel frequency, i.e. fires occurred in the same place in many years. This high pixel frequency was also found in most protected areas in these zones. As to the kinds of land cover affected by fire, the highest fire occurrence is observed within the Deciduous woodlands and Deciduous shrublands. Concerning the burn severity, which was observed at a local scale, field data correlated closely with the ΔNBR derived from Landsat scenes of Pendjari National Park (R2 = 0.76). The correlation coefficient according to Pearson is r = 0.84 and according to Spearman-Rho, the correlation coefficient is r = 0.86. Very low and low burn severity (with ΔNBR value from 0 to 0.40) affected the vegetation weakly (0-35 percent of biomass loss) whereas moderate and high burn severity greatly affected the vegetation, leading to up to 100 percent of biomass loss, with the ΔNBR value ranging from 0.41 to 0.99. It can be seen from these results that remotely sensed images offer a tool to determine the fire distribution over large regions in savannas and that the Normalised Burn Ratio index can be applied to West Africa savannas. The outcomes of this thesis will hopefully contribute to understanding and, eventually, improving fire regimes in West Africa and their response to climate change and changes in vegetation diversity.}, subject = {Westafrika}, language = {en} }