@phdthesis{Stoll2015, author = {Stoll, Georg}, title = {Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called "mRNP- code". In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early" mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases.}, subject = {Messenger-RNS}, language = {en} } @article{RaulfMaeuelerRobertsonetal.1989, author = {Raulf, Friedrich and M{\"a}ueler, Winfried and Robertson, Scott M. and Schartl, Manfred}, title = {Localization of cellular src mRNA during development and in the differentiated bipolar neurons of the adult neural retina in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86703}, year = {1989}, abstract = {The expression of the c-src gene in embryonie and adult tissue of the teleost fish Xiphophorus helleri was analyzed by in-situ hybridization. The highly conserved fish c-src gene was found to be expressed at high levels in midterm embryos, where c-src mRNA was localized in developing neurons of the sensory layer of the differentiating retina and in the developing brain. In adult tissues the expression of c-src was found to persist in certain cell types of the brain and the neural retina, especially in the bipolar cells of the inner nuclear layer, which are postmitotic, fully differentiated mature neurons. Thus c-src in Xiphophorus appears to be a developmentally regulated proto-oncogene which is important for neuronal differentiation during organogenesis, but whose persistence of expression in certain terminally differentiated neurons strongly suggests a particular maintenance function for c-src in these cells as well.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @phdthesis{Tyagi2012, author = {Tyagi, Anu}, title = {Role of SWI/SNF in regulating pre-mRNA processing in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {ATP dependent chromatin remodeling complexes are multifactorial complexes that utilize the energy of ATP to rearrange the chromatin structure. The changes in chromatin structure lead to either increased or decreased DNA accessibility. SWI/SNF is one of such complex. The SWI/SNF complex is involved in both transcription activation and transcription repression. The ATPase subunit of SWI/SNF is called SWI2/SNF2 in yeast and Brahma, Brm, in Drosophila melanogaster. In mammals there are two paralogs of the ATPase subunit, Brm and Brg1. Recent studies have shown that the human Brm is involved in the regulation of alternative splicing. The aim of this study was to investigate the role of Brm in pre-mRNA processing. The model systems used were Chironomus tentans, well suited for in situ studies and D. melanogaster, known for its full genome information. Immunofluorescent staining of the polytene chromosome indicated that Brm protein of C. tentans, ctBrm, is associated with several gene loci including the Balbiani ring (BR) puffs. Mapping the distribution of ctBrm along the BR genes by both immuno-electron microscopy and chromatin immunoprecipitation showed that ctBrm is widely distributed along the BR genes. The results also show that a fraction of ctBrm is associated with the nascent BR pre-mRNP. Biochemical fractionation experiments confirmed the association of Brm with the RNP fractions, not only in C. tentans but also in D. melanogaster and in HeLa cells. Microarray hybridization experiments performed on S2 cells depleted of either dBrm or other SWI/SNF subunits show that Brm affects alternative splicing and 3´ end formation. These results indicated that BRM affects pre-mRNA processing as a component of SWI/SNF complexes. 1}, subject = {Taufliege}, language = {en} } @phdthesis{Herold2003, author = {Herold, Andrea}, title = {The role of human and Drosophila NXF proteins in nuclear mRNA export}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {A distinguishing feature of eukaryotic cells is the spatial separation of the site of mRNA synthesis (nucleus) from the site of mRNA function (cytoplasm) by the nuclear envelope. As a consequence, mRNAs need to be actively exported from the nucleus to the cytoplasm. At the time when this study was initiated, both human TAP and yeast Mex67p had been proposed to play a role in this process. Work presented in this thesis (section 2.1) revealed that TAP and Mex67p belong to an evolutionarily conserved family of proteins which are characterized by a conserved modular domain organization. This family was termed nuclear export factor (NXF) family. While the yeast genome encodes only one NXF protein (Mex67p), the genomes of higher eukaryotes encode several NXF proteins. There are two nxf genes in C. elegans and A. gambiae, four in D. melanogaster, and at least four in H. sapiens and M. musculus. It was unclear whether, apart from TAP and Mex67p, other members of this family would also be involved in mRNA export. In the first part of this thesis (2.1), several human NXF members were tested for a possible function in nuclear mRNA export. They were analyzed for their interaction with RNA, nucleoporins and other known TAP partners in vitro, and tested for their ability to promote nuclear export of a reporter mRNA in vivo. Using these assays, human NXF2, NXF3 and NXF5 were all shown to interact with the known NXF partner p15. NXF2 and NXF5 were also found to bind directly to RNA, but only NXF2 was able to bind directly to nucleoporins and to promote the nuclear export of an (untethered) reporter mRNA. Thus NXF2 possesses many and NXF3 and NXF5 possess some of the features required to serve as an export receptor for cellular mRNAs. As NXF2 and NXF3 transcripts were mainly found in testis, and the closest orthologue of NXF5 in mouse has the highest levels of expression in brain, these NXF members could potentially serve as tissue-specific mRNA export receptors. In the second part of this work (2.2), the role of different Drosophila NXF proteins and other export factors in mRNA export was investigated using double-stranded RNA interference (RNAi) in Drosophila Schneider cells. Three of the four predicted Drosophila NXF members (NXF1-3) were found to be expressed in this cell line and could be targeted by RNAi. Depletion of endogenous NXF1 inhibited growth and resulted in the nuclear accumulation of polyadenylated RNA. Fluorescence in situ hybridization revealed that export of both heat shock and non-heat shock mRNAs, including intron-containing and intronless mRNAs, was inhibited. Depleting endogenous NXF2 or NXF3 had no apparent phenotype. These results suggested that NXF1 (but not NXF2-NXF4) mediates the export of bulk mRNA in Drosophila cells. We and others have shown that human NXF proteins function as heterodimers bound to the small protein p15. Accordingly, silencing of Drosophila p15 resulted in a block of mRNA export which was indistinguishable from the export inhibition seen after targeting NXF1. These observations indicated that neither NXF1 nor p15 can promote export in the absence of the other subunit of the heterodimer. NXF1:p15 heterodimers are implicated in late steps of mRNA export, i.e. in the translocation of mRNP export cargoes across the nuclear pore complex. The mechanism by which NXF1:p15 dimers are recruited to the mRNA is unclear. A protein that is thought to play a role in this process is the putative RNA helicase UAP56. Similar to NXF1 and p15, UAP56 was shown to be essential for mRNA export in Drosophila. UAP56 is recruited cotranscriptionally to nascent transcripts and was suggested to facilitate the interaction of NXF1:p15 with mRNPs. Even though both NXF1:p15 heterodimers and UAP56 had been implicated in general mRNA export, it was unclear whether there are classes of mRNAs that require NXF1:p15, but not UAP56 or vice versa. It was also unclear what fraction of cellular mRNAs is exported by NXF1:p15 dimers and UAP56, and whether mRNAs exist that reach the cytoplasm through alternative routes, i.e. by recruiting other export receptors. To address these issues we performed a genome-wide analysis of nuclear mRNA export pathways using microarray technology (2.2.2). We analyzed the relative abundance of nearly half of the Drosophila transcriptome in the cytoplasm of Drosophila Schneider cells depleted of different export factors by RNAi. We showed that the vast majority of transcripts were underrepresented in the cytoplasm of cells depleted of NXF1, p15 or UAP56 as compared to control cells. Only a small number of mRNAs were apparently not affected by the depletions. These observations, together with the wide and similar effects on mRNA levels caused by the depletion of NXF1, p15 or UAP56, indicate that these proteins define the major mRNA export pathway in these cells. We also identified a small subset of mRNAs which appeared to be exported by NXF1:p15 dimers independently of UAP56. In contrast, no significant changes in mRNA expression profiles were observed in cells depleted of NXF2 or NXF3, suggesting that neither NXF2 nor NXF3 play an essential role in mRNA export in Drosophila Schneider cells. Crm1 is a transport receptor implicated in the export of a variety of non-mRNA and protein cargoes. In addition, human Crm1 has been suggested to be involved in the export of a specific mRNA species, serving as a "specialized" mRNA export receptor. A role of human Crm1 in the export of bulk mRNA is considered unlikely. We analyzed the role of Drosophila Crm1 in mRNA export by inhibiting Crm1 with the drug leptomycin B in Schneider cells. Subsequent microarray analysis demonstrated that the inactivation of Crm1 resulted in decreased cytoplasmic levels of less than 1\% of all mRNAs, indicating that Crm1 is indeed not a major mRNA export receptor. The genome-wide analysis also revealed a feedback loop by which a block to mRNA export triggers the upregulation of genes involved in this process. This thesis also includes two sections describing projects in which I participated during my Ph.D., but which were not the main focus of this thesis. In section 2.3, the role of the different TAP/NXF1 domains in nuclear mRNA export is discussed. Section 2.4 describes results that were obtained as part of a collaboration using the RNAi technique in Schneider cells to study the function of Cdc37.}, subject = {Zellkern}, language = {en} }