@phdthesis{Hanio2024, author = {Hanio, Simon}, title = {The impact of bile on intestinal permeability of drug substances}, doi = {10.25972/OPUS-34890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348906}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Most medicines are taken orally. To enter the systemic circulation, they dissolve in the intestinal fluid, cross the epithelial barrier, and pass through the liver. Intestinal absorption is driven by the unique features of the gastrointestinal tract, including the bile colloids formed in the lumen and the mucus layer covering the intestinal epithelium. Neglecting this multifaceted environment can lead to poor drug development decisions, especially for poorly water-soluble drugs that interact with bile and mucus. However, there is a lack of a rationale nexus of molecular interactions between oral medicines and gastrointestinal components with drug bioavailability. Against this background, this thesis aims to develop biopharmaceutical strategies to optimize the presentation of oral therapeutics to the intestinal epithelial barrier. In Chapter 1, the dynamics of bile colloids upon solubilization of the poorly-water soluble drug Perphenazine was studied. Perphenazine impacted molecular arrangement, structure, binding thermodynamics, and induced a morphological transition from vesicles to worm-like micelles. Despite these dynamics, the bile colloids ensured stable relative amounts of free drug substance. The chapter was published in Langmuir. Chapter 2 examined the impact of pharmaceutical polymeric excipients on bile-mediated drug solubilization. Perphenazine and Imatinib were introduced as model compounds interacting with bile, whereas Metoprolol did not. Some polymers altered the arrangement and geometry of bile colloids, thereby affecting the molecularly soluble amount of those drugs interacting with bile. These insights into the bile-drug-excipient interplay provide a blueprint to optimizing formulations leveraging bile solubilization. The chapter was published in Journal of Controlled Release. Chapter 3 deals with the impact of bile on porcine intestinal mucus. Mucus exposed to bile solution changed transiently, it stiffened, and the overall diffusion rate increased. The bile-induced changes eased the transport of the bile-interacting drug substance Fluphenazine, whereas Metoprolol was unaffected. This dichotomous pattern was linked to bioavailability in rats and generalized based on two previously published data sets. The outcomes point to a bile-mucus interaction relevant to drug delivery. The chapter is submitted. The Appendix provides a guide for biopharmaceutical characterization of drug substances by nuclear magnetic resonance spectroscopy aiming at establishing a predictive algorithm. In summary, this thesis deciphers bile-driven mechanisms shaping intestinal drug absorption. Based on these molecular insights, pharmaceuticals can be developed along a biopharmaceutical optimization, ultimately leading to better oral drugs of tomorrow.}, subject = {Solubilisation}, language = {en} } @phdthesis{Yang2023, author = {Yang, Mengshi}, title = {Synthesis, solubility and optical activity of chiral poly(2,4- disubstituted-2-oxazoline)s}, doi = {10.25972/OPUS-32242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322429}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Motivated by the perceived great potential of chiral polymers, the presented work aimed at the investigation of synthesis, solubility and optical activity of chiral poly(2,4-disubstituted-2-oxazoline)s. A novel polymeric carrier based on ABA-type triblock copolymers poly(2-oxazoline)s with chiral and racemic hydrophobic blocks was developed for the formulation of chiral and achiral drugs (Fig. 5.1). Poly(2-methyl-2-oxazoline) (pMeOx) was used as hydrophilic A block, and poly(2-ethyl-4-ethyl-2-oxazoline) (pEtEtOx) and poly(2-propyl-4-methyl-2-oxazoline) (pPrMeOx) were used as hydrophobic B blocks. Curcumin (CUR), paclitaxel (PTX) and chiral/racemic ibuprofen (R/S/RS-IBU) were applied as model drugs. Nanoformulations were prepared consisting of these triblock copolymers and model drugs. ...}, language = {en} } @article{ZahoranovaLuxenhofer2021, author = {Zahoranov{\´a}, Anna and Luxenhofer, Robert}, title = {Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update}, series = {Advanced Healthcare Materials}, volume = {10}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.202001382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225833}, year = {2021}, abstract = {For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.}, language = {en} } @phdthesis{Grebinyk2021, author = {Grebinyk, Anna}, title = {Synergistic Chemo- and Photodynamic Treatment of Cancer Cells with C\(_{60}\) Fullerene Nanocomplexes}, doi = {10.25972/OPUS-22207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222075}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. In the current study the dual functionality of C60 as a photosensitizer and a drug nanocarrier was exploited to improve the efficiency of chemotherapeutic drugs towards human leukemic cells. Pristine C60 demonstrated time-dependent accumulation with predominant mitochondrial localization in leukemic cells. C60's effects on leukemic cells irradiated with high power single chip LEDs of different wavelengths were assessed to find out the most effective photoexcitation conditions. A C60-based noncovalent nanosized system as a carrier for an optimized drug delivery to the cells was evaluated in accordance to its physicochemical properties and toxic effects. Finally, nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios were explored to improve the efficiency of cell treatment, complementing it with photodynamic approach. A proposed treatment strategy was developed for C60 nanocomplexes with the common chemotherapeutic drug Doxorubicin, whose intracellular accumulation and localization, cytotoxicity and mechanism of action were investigated. The developed strategy was revealed to be transferable to an alternative potent anticancer drug - the herbal alkaloid Berberine. Hereafter, a strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation was revealed. Presented data indicate that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.}, subject = {cancer}, language = {en} } @article{LuebtowMarciniakSchmiedeletal.2019, author = {L{\"u}btow, Michael M. and Marciniak, Henning and Schmiedel, Alexander and Roos, Markus and Lambert, Christoph and Luxenhofer, Robert}, title = {Ultra-high to ultra-low drug loaded micelles: Probing host-guest interactions by fluorescence spectroscopy}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {54}, doi = {10.1002/chem.201902619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206128}, pages = {12601-12610}, year = {2019}, abstract = {Polymer micelles are an attractive means to solubilize water insoluble compounds such as drugs. Drug loading, formulations stability and control over drug release are crucial factors for drug-loaded polymer micelles. The interactions between the polymeric host and the guest molecules are considered critical to control these factors but typically barely understood. Here, we compare two isomeric polymer micelles, one of which enables ultra-high curcumin loading exceeding 50 wt.\%, while the other allows a drug loading of only 25 wt.\%. In the low capacity micelles, steady-state fluorescence revealed a very unusual feature of curcumin fluorescence, a high energy emission at 510 nm. Time-resolved fluorescence upconversion showed that the fluorescence life time of the corresponding species is too short in the high-capacity micelles, preventing an observable emission in steady-state. Therefore, contrary to common perception, stronger interactions between host and guest can be detrimental to the drug loading in polymer micelles.}, subject = {Polymer-drug interaction}, language = {en} } @phdthesis{Kress2019, author = {Kreß, Sebastian}, title = {Development and proof of concept of a biological vascularized cell-based drug delivery system}, doi = {10.25972/OPUS-17865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on-demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell-based therapies and the generation of complex and customized cell-specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co-cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc-TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies.}, subject = {Vaskularisation}, language = {en} } @phdthesis{Steiger2017, author = {Steiger, Christoph}, title = {Drug delivery of therapeutic gases - strategies for controlled and local delivery of carbon monoxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The isoenzyme heme oxygenase 1 (HO-1) is a key element for maintaining cellular homeostasis. Upregulated in response to cellular stress, the HO-1 degrades heme into carbon monoxide (CO), biliverdin, and Fe2+. By means of a local cell-protective feedback loop the enzyme triggers numerous effects including anti-oxidative, anti-apoptotic, and anti-inflammatory events associated with complex signalling patterns which are largely orchestrated by CO. Various approaches to mimic this physiological HO-1 / CO system aiming for a treatment of medical conditions have been described [1]. These preclinical studies commonly applied CO systemically via (i) inhalation or (ii) using CO-Releasing Molecules (CORMs) [2]. The clinical use of these approaches, however, is challenged by a lack of practicability and substantial safety issues associated with the toxicity of high systemic doses of CO that are required for triggering therapeutic effects. Therefore, one rational of this thesis is to describe and evaluate strategies for the local delivery of CO aiming for safe and effective CO therapeutics of tomorrow.}, subject = {Targeted drug delivery}, language = {en} } @article{HoyerSchatzschneiderSchulzSiegmundetal.2012, author = {Hoyer, Jan and Schatzschneider, Ulrich and Schulz-Siegmund, Michaela and Neundorf, Ines}, title = {Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery}, series = {Beilstein Journal of Organic Chemistry}, volume = {8}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.8.204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133933}, pages = {1788-1797}, year = {2012}, abstract = {Over the past 20 years, cell-penetrating peptides (CPPs) have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene) complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC18)\(_2\), which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC18)\(_2\) leads to significant reduction of its IC\(_{50}\) value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.}, language = {en} } @article{ShityakovBroscheitFoerster2013, author = {Shityakov, Sergey and Broscheit, Jens and F{\"o}rster, Carola}, title = {Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study.}, series = {International journal of computational biology and drug design}, volume = {6}, journal = {International journal of computational biology and drug design}, number = {4}, doi = {10.1504/IJCBDD.2013.056801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132089}, pages = {343-357}, year = {2013}, abstract = {P-glycoprotein (P-gp)-mediated efflux system plays an important role to maintain chemical balance in mammalian cells for endogenous and exogenous chemical compounds. However, despite the extensive characterisation of P-gp potential interaction with drug-like molecules, the interaction of carbon nanoparticles with this type of protein molecule is poorly understood. Thus, carbon nanoparticles were analysed, such as buckminsterfullerenes (C20, C60, C70), capped armchair single-walled carbon nanotube (SWCNT or C168), and P-gp interactions using different molecular docking techniques, such as gradient optimisation algorithm (ADVina), Lamarckian genetic algorithm (FastDock), and shape-based approach (PatchDock) to estimate the binding affinities between these structures. The theoretical results represented in this work show that fullerenes might be P-gp binders because of low levels of Gibbs free energy of binding (ΔG) and potential of mean force (PMF) values. Furthermore, the SWCNT binding is energetically unfavourable, leading to a total decrease in binding affinity by elevation of the residual area (Ares), which also affects the π-π stacking mechanisms. Further, the obtained data could potentially call experimental studies using carbon nanostructures, such as SWCNT for development of drug delivery vehicles, to administer and assess drug-like chemical compounds to the target cells since organisms probably did not develop molecular sensing elements to detect these types of carbon molecules.}, language = {en} } @article{SchulzJakschSchubeletal.2014, author = {Schulz, Anita and Jaksch, Sebastian and Schubel, Rene and Wegener, Erik and Di, Zhenyu and Han, Yingchao and Meister, Annette and Kressler, J{\"o}rg and Kabanov, Alexander V. and Luxenhofer, Robert and Papadakis, Christine M. and Jordan, Rainer}, title = {Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s}, series = {ACS Nano}, volume = {8}, journal = {ACS Nano}, number = {3}, doi = {10.1021/nn406388t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120766}, pages = {2686-96}, year = {2014}, abstract = {Defined aggregates of polymers such as polymeric micelles are of great importance in the development of pharmaceutical formulations. The amount of drug that can be formulated by a drug delivery system is an important issue, and most drug delivery systems suffer from their relatively low drug-loading capacity. However, as the loading capacities increase, i.e., promoted by good drug-polymer interactions, the drug may affect the morphology and stability of the micellar system. We investigated this effect in a prominent system with very high capacity for hydrophobic drugs and found extraordinary stability as well as a profound morphology change upon incorporation of paclitaxel into micelles of amphiphilic ABA poly(2-oxazoline) triblock copolymers. The hydrophilic blocks A comprised poly(2-methyl-2-oxazoline), while the middle blocks B were either just barely hydrophobic poly(2-n-butyl-2-oxazoline) or highly hydrophobic poly(2-n-nonyl-2-oxazoline). The aggregation behavior of both polymers and their formulations with varying paclitaxel contents were investigated by means of dynamic light scattering, atomic force microscopy, (cryogenic) transmission electron microscopy, and small-angle neutron scattering. While without drug, wormlike micelles were present, after incorporation of small amounts of drugs only spherical morphologies remained. Furthermore, the much more hydrophobic poly(2-n-nonyl-2-oxazoline)-containing triblock copolymer exhibited only half the capacity for paclitaxel than the poly(2-n-butyl-2-oxazoline)-containing copolymer along with a lower stability. In the latter, contents of paclitaxel of 8 wt \% or higher resulted in a raspberry-like micellar core.}, language = {en} } @article{HuettenDhanasinghHessleretal.2014, author = {H{\"u}tten, Mareike and Dhanasingh, Anandhan and Hessler, Roland and St{\"o}ver, Timo and Esser, Karl-Heinz and M{\"o}ller, Martin and Lenarz, Thomas and Jolly, Claude and Groll, J{\"u}rgen and Scheper, Verena}, title = {In Vitro and In Vivo Evaluation of a Hydrogel Reservoir as a Continuous Drug Delivery System for Inner Ear Treatment}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104564}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119375}, pages = {e104564}, year = {2014}, abstract = {Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX). To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO) prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.}, language = {en} } @phdthesis{Werner2015, author = {Werner, Vera}, title = {Pharmaceutically relevant protein-protein interactions for controlled drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117409}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts - NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) - and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies.}, subject = {Protein-Protein-Wechselwirkung}, language = {en} }