@article{Schlenkrich2019, author = {Schlenkrich, Oliver}, title = {Identifying Profiles of Democracies: A Cluster Analysis Based on the Democracy Matrix Dataset from 1900 to 2017}, series = {Politics and Governance}, volume = {7}, journal = {Politics and Governance}, number = {4}, issn = {2183-2463}, doi = {10.17645/pag.v7i4.2244}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150882}, pages = {315-330}, year = {2019}, abstract = {This study examines types of democracies that result from trade-offs within the democratic quality. Recently, the existence and relevance of trade-offs has been widely discussed. The idea is that the functions associated with the quality of democracy cannot all be maximized simultaneously. Thus, trade-offs are expressed in distinct profiles of democracy. Different profiles of democracy favour certain democracy dimensions over others due to their institutional design. Conceptually, we differentiate between four different democracy profiles: a libertarian-majoritarian (high political freedom, lower political equality, and lower political and legal control values), an egalitarian-majoritarian (high equality combined with lower freedom and control values), as well as two control-focused democracy profiles (high control values either with high degrees of freedom or high degrees of equality). We apply a cluster analysis with a focus on cluster validation on the Democracy Matrix dataset—a customized version of the Varieties-of-Democracy dataset. To increase the robustness of the cluster results, this study uses several different cluster algorithms, multiple fit indices as well as data resampling techniques. Based on all democracies between 1900 and 2017, we find strong empirical evidence for these democracy profiles. Finally, we discuss the temporal development and spatial distribution of the democracy profiles globally across the three waves of democracy, as well as for individual countries.}, language = {en} } @article{LandmanLauth2019, author = {Landman, Todd and Lauth, Hans-Joachim}, title = {Political Trade-Offs: Democracy and Governance in a Changing World}, series = {Politics and Governance}, volume = {7}, journal = {Politics and Governance}, number = {4}, issn = {2183-2463}, doi = {10.17645/pag.v7i4.2642}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144308}, pages = {237-242}, year = {2019}, abstract = {The investigation of trade-offs in political science receives only limited attention, although many scholars acknowledge the importance of trade-offs across a variety of different areas. A systematic and comprehensive examination of the topic is missing. This thematic issue of Politics and Governance sheds light on this research deficit by providing a holistic but also an integrative view on trade-offs in the political realm for the first time. Researchers of trade-offs from different political areas present and discuss their findings, and promote a fruitful exchange, which overcomes the current isolation of the approaches. They consider the theoretical and methodological questions as well as the identification of empirical tradeoffs. Furthermore, they provide insights into the possibility to balance trade-offs and strategies, which could help actors to find such compromises.}, language = {en} } @phdthesis{Fronhofer2013, author = {Fronhofer, Emanuel Alexis}, title = {Beyond classical metapopulations: trade-offs and information use in dispersal ecology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85816}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {All animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context of metapopulations. This has allowed researchers to take into account the landscape level, e.g. for determining conservation measures. However, a majority of theses studies classically did not include dispersal evolution. Yet, it is well known that dispersal is subject to evolution and that this process may occur (very) rapidly, i.e. over short ecological time-scales. Studies that do take dispersal evolution into account, mostly focus on eco-evolutionary forces arising at the level of populations - intra-specific competition or Allee effects, for example - and at the level of landscapes - e.g. connectivity, patch area and fragmentation. Yet, relevant ecological and evolutionary forces can emerge at all levels of biological complexity, from genes and individuals to populations, communities and landscapes. Here, I focus on eco-evolutionary forces arising at the gene- and especially at the individual level. Combining individual-based modelling and empirical field work, I explicitly analyse the influence of mobility trade-offs and information use for dispersal decisions - i.e. individual level factors - during the three phases of dispersal - emigration, transfer and immigration. I additionally take into account gene level factors such as ploidy, sexual reproduction (recombination) and dominance. Mobility-fertility trade-offs may shape evolutionarily stable dispersal strategies and lead to the coexistence of two or more dispersal strategies, i.e. polymorphisms and polyphenisms. This holds true for both dispersal distances (chapter 3) and emigration rates (chapter 4). In sessile organisms - such as trees or corals - maternal investment, i.e. transgenerational trade-offs between maternal fertility and propagule dispersiveness, can be the cause of bimodal and fat-tailed dispersal kernels. However, the coexistence of two or more dispersal strategies may be critically dependent on gene level factors, such as ploidy or dominance (chapter 4). Passively dispersing individuals may realize such multimodal dispersal kernels by mixing different dispersal vectors. Active choice of these vectors allows to optimize the kernel. As most animals have evolved some kind of memory and sensory apparatus - chemical, acoustic or optical sensors - it is obvious that these capacities should be used for dispersal decisions. Chapter 5 explores the use of chemical cues for vector choice in passively dispersed animals. I find that the neotropical phoretic flower mites Spadiseius calyptrogynae non-randomly mix different dispersal vectors, i.e. one short- and one long-distance disperser, in order to achieve fat-tailed dispersal kernels. Such kernels allow an optimal exploitation of patchily distributed habitats. In addition, this strategy increases the probability of successful immigration as the short-distance dispersal vectors show directed dispersal towards suitable habitats. Results from individual-based simulations support and explain my empirical findings. The use of memory and sensory apparatus in dispersal is also the main topic of chapter 6 which strives to bridge the gap between dispersal and movement ecology. In this part of my thesis I develop a model of non-random, memory-based animal movement strategies. Extending the movement ecology paradigm of Nathan (2008a) I postulate that four elements may be relevant for the emergence of efficient movement strategies: perception, memory, inference and anticipation. Movement strategies including these four elements optimize search efficiency at two scales: within patches and between patches. This leads to a significantly increased search efficiency over a comparable area restricted search strategy. These four chapters are completed by a general analysis of metapopulation dynamics (chapter 2). I find that although the metapopulation concept is very popular in theoretical ecology, classical metapopulations can be predicted to be rare in nature, as suggested by lacking empirical evidence. This is especially the case when gene level factors, such as ploidy and sex, are taken into account. In summary, my work analyses the effects of ecological and evolutionary forces arising at the gene- and individual level on the evolution of dispersal and movement strategies. I highlight the importance of including these limiting factors, mechanisms and processes and show how they impact the evolution of dispersal in spatially structured populations. All chapters demonstrate that these forces may have dramatic effects on resulting ecological and evolutionary dynamics. If we intend to understand animal and plant dispersal or movement, it is crucial to include eco-evolutionary forces emerging at all levels of complexity, from genes to communities and landscapes. This endeavour is certainly not purely academic. Particularly nowadays, with rapidly changing landscape structures and anticipated drastic shifts of climatic zones due to global change, dispersal is a factor that cannot be overestimated.}, subject = {Metapopulation}, language = {en} }