@article{KacicThonfeldGessneretal.2023, author = {Kacic, Patrick and Thonfeld, Frank and Gessner, Ursula and Kuenzer, Claudia}, title = {Forest structure characterization in Germany: novel products and analysis based on GEDI, Sentinel-1 and Sentinel-2 data}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {8}, issn = {2072-4292}, doi = {10.3390/rs15081969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313727}, year = {2023}, abstract = {Monitoring forest conditions is an essential task in the context of global climate change to preserve biodiversity, protect carbon sinks and foster future forest resilience. Severe impacts of heatwaves and droughts triggering cascading effects such as insect infestation are challenging the semi-natural forests in Germany. As a consequence of repeated drought years since 2018, large-scale canopy cover loss has occurred calling for an improved disturbance monitoring and assessment of forest structure conditions. The present study demonstrates the potential of complementary remote sensing sensors to generate wall-to-wall products of forest structure for Germany. The combination of high spatial and temporal resolution imagery from Sentinel-1 (Synthetic Aperture Radar, SAR) and Sentinel-2 (multispectral) with novel samples on forest structure from the Global Ecosystem Dynamics Investigation (GEDI, LiDAR, Light detection and ranging) enables the analysis of forest structure dynamics. Modeling the three-dimensional structure of forests from GEDI samples in machine learning models reveals the recent changes in German forests due to disturbances (e.g., canopy cover degradation, salvage logging). This first consistent data set on forest structure for Germany from 2017 to 2022 provides information of forest canopy height, forest canopy cover and forest biomass and allows estimating recent forest conditions at 10 m spatial resolution. The wall-to-wall maps of the forest structure support a better understanding of post-disturbance forest structure and forest resilience.}, language = {en} } @article{KacicKuenzer2022, author = {Kacic, Patrick and Kuenzer, Claudia}, title = {Forest biodiversity monitoring based on remotely sensed spectral diversity — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs14215363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290535}, year = {2022}, abstract = {Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts "vegetation indices", "spectral information content", and "spectral species" for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.}, language = {en} }