@unpublished{HeidenreichGassenmaierAnkenbrandetal.2021, author = {Heidenreich, Julius F. and Gassenmaier, Tobias and Ankenbrand, Markus J. and Bley, Thorsten A. and Wech, Tobias}, title = {Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction}, edition = {accepted version}, doi = {10.1016/j.ejrad.2021.109817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323418}, year = {2021}, abstract = {Purpose To fully automatically derive quantitative parameters from late gadolinium enhancement (LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase sensitive or magnitude reconstructions or a combination of both results in best segmentation accuracy. Methods In this retrospective single center study, a convolutional neural network with a U-Net architecture with a self-configuring framework ("nnU-net") was trained for segmentation of left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations from 78 patients with history of myocardial infarction was assembled. Separate fitting of the model was performed, using phase sensitive inversion recovery, the magnitude reconstruction or both contrasts as input channels. Manual labelling served as ground truth. In a subset of 10 patients, the performance of the trained models was evaluated and quantitatively compared by determination of the S{\o}rensen-Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual ground truth using Pearson's r correlation and Bland-Altman analysis. Results The model achieved high similarity coefficients for myocardium and scar tissue. No significant difference was observed between using PSIR, magnitude reconstruction or both contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08 for scars). A strong correlation for volumes of infarct zone was observed between manual and model-based approach (r = 0.96), with a significant underestimation of the volumes obtained from the neural network. Conclusion The self-configuring nnU-net achieves predictions with strong agreement compared to manual segmentation, proving the potential as a promising tool to provide fully automatic quantitative evaluation of LGE-CMR.}, language = {en} } @article{AnkenbrandShainbergHocketal.2021, author = {Ankenbrand, Markus J. and Shainberg, Liliia and Hock, Michael and Lohr, David and Schreiber, Laura M.}, title = {Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-021-00551-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259169}, pages = {27}, year = {2021}, abstract = {Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.}, language = {en} }