@inproceedings{WernerWakabayashiJahnsetal.2017, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {PET-Guided Histological Characterization of Myocardial Infiltrating Cells in a Rat Model of Myocarditis}, series = {European Heart Journal - Cardiovascular Imaging}, volume = {18}, booktitle = {European Heart Journal - Cardiovascular Imaging}, number = {Supplement}, publisher = {Oxford University Press}, issn = {2047-2404}, doi = {10.1093/ehjci/jex071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161127}, pages = {i1-i3}, year = {2017}, abstract = {No abstract available.}, subject = {Myokarditis}, language = {en} } @phdthesis{Messerer2017, author = {Messerer, Regina}, title = {Synthesis of Dualsteric Ligands for Muscarinic Acetylcholine Receptors and Cholinesterase Inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The study is dealing with the synthesis and pharmacological investigation of newly designed dualsteric ligands of muscarinic acetylcholine receptors belonging to the superfamily of G protein-coupled receptors. Such bipharmacophoric ligands combine the advantages of the orthosteric binding site (high-affinity) and of the topographically distinct allosteric binding site (subtype-selectivity) resulting in compounds with reduced side effects. This opens the way to a new therapeutic approach in the treatment of e.g. chronic pain, drug withdrawal, Parkinson`s and Alzheimer`s disease. Furthermore, the newly synthesized dualsteric compounds were pharmacologically investigated in order to get a better understanding of the activation and signaling processes in muscarinic acetylcholine receptors, especially with regard to partial agonism. The development of the "dynamic ligand binding" concept offers new perspectives for ligand binding and signaling at G protein-coupled receptors. GPCRs are no longer considered as simple on/off switches. Dualsteric ligands can bind in a dualsteric pose, reflecting an active receptor state as well as in a purely allosteric binding pose, characterized by an inactive receptor state resulting in partial agonism. The degree of partial agonism depends on the ratio of active versus inactive receptor populations. On this basis, orthosteric/orthosteric hybrid ligands consisting of the antagonist atropine and scopolamine, respectively, as well as of the agonist iperoxo and isoxazole, respectively, linked via different alkyl chain length were synthesized in order to investigate partial agonism (Figure 1). Figure 1: Structures of the synthesized iperoxo/isoxazole-atropine/scopolamine-hybrids. Furthermore, different sets of quaternary and tertiary homodimers consisting either of two iperoxo or two acetylcholine units were synthesized in order to study their extent on partial agonism (Figure 2). The two agonists were connected by varying alkyl chain length. Binding studies on CHO-hM2 cells of the quaternary compounds revealed that dimerization of the agonist results in a loss of potency. The iperoxo-dimers reached higher maximum effects on the Gi- as well as on the Gs pathway in comparison to the acetylcholine-dimers. Besides the choice of the orthosteric building block (potency of the agonist), the alkyl chain length is also crucial for the degree of partial agonism. Figure 2: Structures of the synthesized quat./tert. iperoxo/acetylcholine-homodimers. Quinolone-based hybrids connected to the superagonist iperoxo and to the endogenous ligand acetylcholine, respectively, linked through an alkyl chain of different length were synthesized in order to develop further partial agonists (Figure 3). FRET studies confirmed M1 subtype-selectivity as well as linker dependent receptor response. The greatest positive FRET signal was observed with quinolone-C6-iper resulting from a positive cooperativity between the two separated moieties, alloster and orthoster. However, the corresponding hybrids with a longer linker led to an inverse FRET signal indicating a different binding mode, e.g. purely allosteric, in contrast to the shorter linked hybrids. Furthermore, the flexible alkyl spacer was replaced by a rigidified linker resulting in the hybrid quinolone-rigid-iperoxo (Figure 3). FRET studies on the M1 receptor showed reduced FRET kinetics, resulting from interactions between the bulky linker and the aromatic lid, located between the orthosteric and allosteric binding site. A bitopic binding mode of the rigidified hybrid is presumed. For further clarity, mutational studies are necessary. Figure 3: M1-selective hybrid compounds. Another aim of this work was the design and synthesis of new hybrid compounds, acting as agonists at the M1 and M2 receptor and as inhibitors for AChE and BChE in the context of M. Alzheimer. Several sets of hybrid compounds consisting of different pharmacophoric units (catalytic active site: phthalimide, naphthalimide, tacrine; peripheric anionic site: iperoxo, isoxazole) linked through a polymethylene chain of varying length were synthesized. Tac-C10-iper (Figure 4), consisting of tacrine and the superagonist iperoxo linked by a C10 polymethylene spacer, was found to have excellent anticholinesterase activity for both AChE (pIC50 = 9.81) and BChE (pIC50 = 8.75). Docking experiments provided a structural model to rationalize the inhibitory power towards AChE. Additionally, the tacrine related hybrids showed affinity to the M1 and M2 receptor. Such compounds, addressing more than one molecular target are favorable for multifactorial diseases such as Alzheimer. Figure 4: Structure of the most active compound regarding anticholinesterase activity. In summary, the choice of the pharmacophoric units, their connecting point as well as the nature, length, and flexibility of the linker play an important role for the activity of designed bivalent ligands. A shorter linker length cannot bridge both binding sites simultaneously in contrast to longer linker chains. On the other hand, too long linker chains can result in unwanted steric interactions. Further investigations with respect to structural variations of hybrid compounds, with or without quaternary ammonium groups, are necessary in the light of drug development.}, subject = {Cholinesteraseinhibitor}, language = {en} } @article{SchoeneggeGallionPicardetal.2017, author = {Sch{\"o}negge, Anne-Marie and Gallion, Jonathan and Picard, Louis-Philippe and Wilkins, Angela D. and Le Gouill, Christian and Audet, Martin and Stallaert, Wayne and Lohse, Martin J. and Kimmel, Marek and Lichtarge, Olivier and Bouvier, Michel}, title = {Evolutionary action and structural basis of the allosteric switch controlling β\(_2\)AR functional selectivity}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, doi = {10.1038/s41467-017-02257-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172268}, year = {2017}, abstract = {Functional selectivity of G-protein-coupled receptors is believed to originate from ligand-specific conformations that activate only subsets of signaling effectors. In this study, to identify molecular motifs playing important roles in transducing ligand binding into distinct signaling responses, we combined in silico evolutionary lineage analysis and structure-guided site-directed mutagenesis with large-scale functional signaling characterization and non-negative matrix factorization clustering of signaling profiles. Clustering based on the signaling profiles of 28 variants of the β\(_2\)-adrenergic receptor reveals three clearly distinct phenotypical clusters, showing selective impairments of either the Gi or βarrestin/endocytosis pathways with no effect on Gs activation. Robustness of the results is confirmed using simulation-based error propagation. The structural changes resulting from functionally biasing mutations centered around the DRY, NPxxY, and PIF motifs, selectively linking these micro-switches to unique signaling profiles. Our data identify different receptor regions that are important for the stabilization of distinct conformations underlying functional selectivity.}, language = {en} } @article{WeigandRonchiRizkRabinetal.2017, author = {Weigand, Isabel and Ronchi, Cristina L. and Rizk-Rabin, Marthe and Dalmazi, Guido Di and Wild, Vanessa and Bathon, Kerstin and Rubin, Beatrice and Calebiro, Davide and Beuschlein, Felix and Bertherat, J{\´e}r{\^o}me and Fassnacht, Martin and Sbiera, Silviu}, title = {Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {49}, doi = {10.1038/s41598-017-00125-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157952}, year = {2017}, abstract = {Somatic mutations in protein kinase A catalytic α subunit (PRKACA) were found to be causative for 30-40\% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit IIβ. In this study, we linked for the first time the loss of RIIβ protein levels to the PRKACA mutation status and found the down-regulation of RIIβ to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion.}, language = {en} } @article{ChengOthmanStopperetal.2017, author = {Cheng, Cheng and Othman, Eman M. and Stopper, Helga and Edrada-Ebel, RuAngelie and Hentschel, Ute and Abdelmohsen, Usama Ramadan}, title = {Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium \(Streptomyces\) sp. SBT348}, series = {Marine Drugs}, volume = {15}, journal = {Marine Drugs}, number = {12}, doi = {10.3390/md15120383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172644}, year = {2017}, abstract = {A new cyclic dipeptide, petrocidin A (\(\textbf{1}\)), along with three known compounds—2,3-dihydroxybenzoic acid (\(\textbf{2}\)), 2,3-dihydroxybenzamide (\(\textbf{3}\)), and maltol (\(\textbf{4}\))—were isolated from the solid culture of \(Streptomyces\) sp. SBT348. The strain \(Streptomyces\) sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey's reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (\(\textbf{1}\)) and 2,3-dihydroxybenzamide (\(\textbf{3}\)) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products.}, language = {en} } @article{BalasubramanianOthmanKampiketal.2017, author = {Balasubramanian, Srikkanth and Othman, Eman M. and Kampik, Daniel and Stopper, Helga and Hentschel, Ute and Ziebuhr, Wilma and Oelschlaeger, Tobias A. and Abdelmohsen, Usama R.}, title = {Marine sponge-derived Streptomyces sp SBT343 extract inhibits staphylococcal biofilm formation}, series = {Frontiers in Microbiology}, volume = {8}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2017.00236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171844}, year = {2017}, abstract = {Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.}, language = {en} } @article{MaurerHuppBischoffetal.2017, author = {Maurer, Jana and Hupp, Sabrina and Bischoff, Carolin and Foertsch, Christina and Mitchell, Timothy J. and Chakraborty, Trinad and Iliev, Asparouh I.}, title = {Distinct neurotoxicity profile of listeriolysin O from \(Listeria\) \(monocytogenes\)}, series = {Toxins}, volume = {9}, journal = {Toxins}, number = {1}, doi = {10.3390/toxins9010034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172130}, year = {2017}, abstract = {Cholesterol-dependent cytolysins (CDCs) are protein toxins that originate from Gram-positive bacteria and contribute substantially to their pathogenicity. CDCs bind membrane cholesterol and build prepores and lytic pores. Some effects of the toxins are observed in non-lytic concentrations. Two pathogens, \(Streptococcus\) \(pneumoniae\) and \(Listeria\) \(monocytogenes\), cause fatal bacterial meningitis, and both produce toxins of the CDC family—pneumolysin and listeriolysin O, respectively. It has been demonstrated that pneumolysin produces dendritic varicosities (dendrite swellings) and dendritic spine collapse in the mouse neocortex, followed by synaptic loss and astrocyte cell shape remodeling without elevated cell death. We utilized primary glial cultures and acute mouse brain slices to examine the neuropathological effects of listeriolysin O and to compare it to pneumolysin with identical hemolytic activity. In cultures, listeriolysin O permeabilized cells slower than pneumolysin did but still initiated non-lytic astrocytic cell shape changes, just as pneumolysin did. In an acute brain slice culture system, listeriolysin O produced dendritic varicosities in an NMDA-dependent manner but failed to cause dendritic spine collapse and cortical astrocyte reorganization. Thus, listeriolysin O demonstrated slower cell permeabilization and milder glial cell remodeling ability than did pneumolysin and lacked dendritic spine collapse capacity but exhibited equivalent dendritic pathology.}, language = {en} } @article{GodboleLygaLohseetal.2017, author = {Godbole, Amod and Lyga, Sandra and Lohse, Martin J. and Calebiro, Davide}, title = {Internalized TSH receptors en route to the TGN induce local G\(_{S}\)-protein signaling and gene transcription}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {443}, doi = {10.1038/s41467-017-00357-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170375}, year = {2017}, abstract = {A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local G\(_{S}\)-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling.}, language = {en} } @article{AwadOthmanStopper2017, author = {Awad, Eman and Othman, Eman M. and Stopper, Helga}, title = {Effects of resveratrol, lovastatin and the mTOR-inhibitor RAD-001 on insulin-induced genomic damage in vitro}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules22122207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159260}, pages = {2207}, year = {2017}, abstract = {Diabetes mellitus (DM) is one of the major current health problems due to lifestyle changes. Before diagnosis and in the early years of disease, insulin blood levels are elevated. However, insulin generates low levels of reactive oxygen species (ROS) which are integral to the regulation of a variety of intracellular signaling pathways, but excess levels of insulin may also lead to DNA oxidation and DNA damage. Three pharmaceutical compounds, resveratrol, lovastatin and the mTOR-inhibitor RAD-001, were investigated due to their known beneficial effects. They showed protective properties against genotoxic damage and significantly reduced ROS after in vitro treatment of cultured cells with insulin. Therefore, the selected pharmaceuticals may be attractive candidates to be considered for support of DM therapy.}, language = {en} } @article{LohseBockMaiellaroetal.2017, author = {Lohse, Christian and Bock, Andreas and Maiellaro, Isabella and Hannawacker, Annette and Schad, Lothar R. and Lohse, Martin J. and Bauer, Wolfgang R.}, title = {Experimental and mathematical analysis of cAMP nanodomains}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0174856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170972}, pages = {e0174856}, year = {2017}, abstract = {In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.}, language = {en} } @article{ScholzGuanNieberleretal.2017, author = {Scholz, Nicole and Guan, Chonglin and Nieberler, Matthias and Grotmeyer, Alexander and Maiellaro, Isabella and Gao, Shiqiang and Beck, Sebastian and Pawlak, Matthias and Sauer, Markus and Asan, Esther and Rothemund, Sven and Winkler, Jana and Pr{\"o}mel, Simone and Nagel, Georg and Langenhan, Tobias and Kittel, Robert J}, title = {Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28360}, doi = {10.7554/eLife.28360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170520}, year = {2017}, abstract = {Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.}, language = {en} }