@article{MaiellaroLohseKitteetal.2016, author = {Maiellaro, Isabella and Lohse, Martin J. and Kitte, Robert J. and Calebiro, Davide}, title = {cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons}, series = {Cell Reports}, volume = {17}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2016.09.090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162324}, pages = {1238-1246}, year = {2016}, abstract = {The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.}, language = {en} } @phdthesis{Lyga2017, author = {Lyga, Sandra}, title = {Glycoprotein hormone receptor signaling in the endosomal compartment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139994}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {G protein-coupled receptors (GPCRs) are the major group of cell-surface receptors that transmit extracellular signals via classical, G protein-dependent pathways into the cell. Although GPCRs were long assumed to signal exclusively from the cell-surface, recent investigations have demonstrated a possibly completely new paradigm. In this new view, GPCR continues signaling via 3´,5´-cyclic adenosine monophosphate (cAMP) after their agonist-induced internalization of ligand/receptor complexes into an intracellular compartment, causing persistent cAMP elevation and apparently specific signaling outcomes. The thyroid stimulating hormone (TSH) receptor is one of the first GPCRs, which has been reported to show persistent signaling after ligand removal (Calebiro et al., 2009). In the meantime, signaling by internalized GPCR become a highly investigated topic and has been shown for several GPCRs, including the parathyroid hormone receptor (Ferrandon et al., 2009), D1 dopamine receptor (Kotowski et al., 2011) and beta2-adrenergic receptor (Irannejad et al., 2013). A recent study on the beta2-adrenergic receptor revealed that internalized receptor not only participates in cAMP signaling, but is also involved in gene transcription (Tsvetanova and von Zastrow, 2014). However, a biological effect of GPCR signaling at intracellular sites, which would demonstrate its physiological relevance, still remained to be shown. To investigate GPCR signaling from intracellular compartment under physiological condition, two different cellular models were utilized in the present study: intact ovarian follicles expressing luteinizing hormone (LH) receptors and primary thyroid cells expressing TSH receptors. Intact ovarian follicles were obtained from a transgenic mouse expressing, a F{\"o}rster/Fluorescence Resonance Energy Transfer (FRET) sensor for cAMP to monitor cAMP/LH receptor signaling. This study provides the first accurate spatiotemporal characterization of cAMP signaling, which is derived from different cell layers of an intact ovarian follicle. Additionally, it could be shown that cAMP diffusion via gap junctions is implicated in spreading the LH-induced cAMP signals from one the outermost (mural granulosa) to the innermost (cumulus oophorus) cell layer of an ovarian follicle. Interestingly, LH receptor stimulation was associated with persistent cAMP signaling after LH removal and negligible desensitization of the cAMP signal. Interfering with receptor internalization with a dynamin inhibitor dynasore did not only prevent persistent LH-induced cAMP signaling, but also impaired the resumption of meiosis in follicle-enclosed oocytes, a key biological effect of LH. In order to investigate the downstream activation of protein kinase A (PKA) in primary thyroid cells, FRET sensors with different subcellular localization (plasma membrane, cytosol and nucleus) were transiently transfected into primary thyroid cells of wild-type mice via electroporation. Interestingly, TSH stimulation causes at least two distinct phases of PKA activation in the global primary thyroid cell, which are temporally separated by approximately 2 min. In addition, PKA activation in different subcellular compartments are characterized by dissimilar kinetics and amplitudes. Pharmacological inhibition of TSH receptor internalization largely prevented the second (i.e. late) phase of PKA activation as well as the subsequent TSH-dependent phosphorylation of CREB and TSH-dependent induction of early genes. These results suggest that PKA activation and nuclear signaling require internalization of the TSH receptor. Taken together, the data of the present study provide strong evidence that GPCR signaling at intracellular sites is distinct from the one occurring at the cell-surface and is highly physiologically relevant.}, subject = {GPCR}, language = {en} } @phdthesis{Balakrishnan2021, author = {Balakrishnan, Ashwin}, title = {Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy}, doi = {10.25972/OPUS-25085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250856}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40\% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbr{\"u}ck model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling.}, language = {en} }