@article{ZhouDingDuanetal.2021, author = {Zhou, Yang and Ding, Meiqi and Duan, Xiaodong and Konrad, Kai R. and Nagel, Georg and Gao, Shiqiang}, title = {Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics}, series = {Membranes}, volume = {11}, journal = {Membranes}, number = {4}, issn = {2077-0375}, doi = {10.3390/membranes11040287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236617}, year = {2021}, abstract = {Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.}, language = {en} } @article{TianNagelGao2021, author = {Tian, Yuehui and Nagel, Georg and Gao, Shiqiang}, title = {An engineered membrane-bound guanylyl cyclase with light-switchable activity}, series = {BMC Biology}, volume = {19}, journal = {BMC Biology}, number = {1}, doi = {10.1186/s12915-021-00978-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259181}, pages = {54}, year = {2021}, abstract = {Background Microbial rhodopsins vary in their chemical properties, from light sensitive ion transport to different enzymatic activities. Recently, a novel family of two-component Cyclase (rhod)opsins (2c-Cyclop) from the green algae Chlamydomonas reinhardtii and Volvox carteri was characterized, revealing a light-inhibited guanylyl cyclase (GC) activity. More genes similar to 2c-Cyclop exist in algal genomes, but their molecular and physiological functions remained uncharacterized. Results Chlamyopsin-5 (Cop5) from C. reinhardtii is related to Cr2c-Cyclop1 (Cop6) and can be expressed in Xenopus laevis oocytes, but shows no GC activity. Here, we exchanged parts of Cop5 with the corresponding ones of Cr2c-Cyclop1. When exchanging the opsin part of Cr2c-Cyclop1 with that of Cop5, we obtained a bi-stable guanylyl cyclase (switch-Cyclop1) whose activity can be switched by short light flashes. The GC activity of switch-Cyclop1 is increased for hours by a short 380 nm illumination and switched off (20-fold decreased) by blue or green light. switch-Cyclop1 is very light-sensitive and can half-maximally be activated by ~ 150 photons/nm2 of 380 nm (~ 73 J/m2) or inhibited by ~ 40 photons/nm\(^2\) of 473 nm (~ 18 J/m\(^2\)). Conclusions This engineered guanylyl cyclase is the first light-switchable enzyme for cGMP level regulation. Light-regulated cGMP production with high light-sensitivity is a promising technique for the non-invasive investigation of the effects of cGMP signaling in many different tissues.}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{TianGaovonderHeydeetal.2018, author = {Tian, Yuehui and Gao, Shiqiang and von der Heyde, Eva Laura and Hallmann, Armin and Nagel, Georg}, title = {Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases}, series = {BMC Biology}, volume = {16}, journal = {BMC Biology}, number = {144}, doi = {10.1186/s12915-018-0613-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177516}, year = {2018}, abstract = {Background: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called "two-component cyclase opsins" (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery.}, language = {en} } @article{BeckYuStrzelczykPaulsetal.2018, author = {Beck, Sebastian and Yu-Strzelczyk, Jing and Pauls, Dennis and Constantin, Oana M. and Gee, Christine E. and Ehmann, Nadine and Kittel, Robert J. and Nagel, Georg and Gao, Shiqiang}, title = {Synthetic light-activated ion channels for optogenetic activation and inhibition}, series = {Frontiers in Neuroscience}, volume = {12}, journal = {Frontiers in Neuroscience}, number = {643}, doi = {10.3389/fnins.2018.00643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177520}, year = {2018}, abstract = {Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.}, language = {en} }