@article{FergerBanKrošletal.2021, author = {Ferger, Matthias and Ban, Željka and Krošl, Ivona and Tomić, Sanja and Dietrich, Lena and Lorenzen, Sabine and Rauch, Florian and Sieh, Daniel and Friedrich, Alexandra and Griesbeck, Stefanie and Kenđel, Adriana and Miljanić, Snežana and Piantanida, Ivo and Marder, Todd B.}, title = {Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs}, series = {Chemistry-A European Journal}, volume = {27}, journal = {Chemistry-A European Journal}, number = {16}, doi = {10.1002/chem.202005141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256717}, pages = {5142-5159}, year = {2021}, abstract = {We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.}, language = {en} } @article{HeRauchFriedrichetal.2021, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Krebs, Johannes and Krummenacher, Ivo and Bertermann, R{\"u}diger and Nitsch, J{\"o}rn and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Phenylpyridyl-fused boroles: a unique coordination mode and weak B-N coordination-induced dual fluorescence}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {9}, doi = {10.1002/anie.202013692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256423}, pages = {4833-4840}, year = {2021}, abstract = {Phenylpyridyl-fused boroles [TipPBB1]\(_4\) and TipPBB2 were synthesized and their properties investigated. [TipPBB1]\(_4\) forms a tetramer in both the solid state and solution. TipPBB2 contains a 4-coordinate boron atom in the solid state but dissociates to give a 3-coordinate boron species in solution. TipPBB2 shows interesting temperature-dependent dual fluorescence in solution because of the equilibrium between 3- and 4-coordinate boron species due to weak N⋅⋅⋅B intermolecular coordination.}, language = {en} } @article{ChenMengLiaoetal.2021, author = {Chen, Xing and Meng, Guoyun and Liao, Guanming and Rauch, Florian and He, Jiang and Friedrich, Alexandra and Marder, Todd B. and Wang, Nan and Chen, Pangkuan and Wang, Suning and Yin, Xiaodong}, title = {Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {20}, doi = {10.1002/chem.202005185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256738}, pages = {6274-6282}, year = {2021}, abstract = {A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 \% for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.}, language = {en} } @article{FergerBergerRauchetal.2021, author = {Ferger, Matthias and Berger, Sarina M. and Rauch, Florian and Sch{\"o}nitz, Markus and R{\"u}he, Jessica and Krebs, Johannes and Friedrich, Alexandra and Marder, Todd B.}, title = {Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {35}, doi = {10.1002/chem.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256827}, pages = {9094-9101}, year = {2021}, abstract = {A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr\(_{2}\)Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.}, language = {en} } @article{LindlGuoKrummenacheretal.2021, author = {Lindl, Felix and Guo, Xueying and Krummenacher, Ivo and Rauch, Florian and Rempel, Anna and Paprocki, Valerie and Dellermann, Theresa and Stennett, Tom E. and Lamprecht, Anna and Br{\"u}ckner, Tobias and Radacki, Krzysztof and B{\´e}langer-Chabot, Guillaume and Marder, Todd B. and Lin, Zhenyang and Braunschweig, Holger}, title = {Rethinking Borole Cycloaddition Reactivity}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {43}, doi = {10.1002/chem.202101290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256888}, pages = {11226-11233}, year = {2021}, abstract = {Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.}, language = {en} }