@phdthesis{Fritze2021, author = {Fritze, Lars}, title = {Ways to Novel Inorganic-Organic Hybrid Materials Applying New B-C Bond Formation Strategies}, doi = {10.25972/OPUS-24217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {π-Conjugated oligomers and polymers with tricoordinate boron centers incorporated into the main chain have attracted considerable attention as the interaction of the vacant p orbital on boron with an adjacent π system of the chain leads to conjugated materials with intriguing optical and electronic properties. This enables applicability in organic electronics and optoelectronics (OLEDs, OFETs, photovoltaics) or as sensory materials. The potential of our B-C coupling protocol using metal-free catalytic Si/B exchange condensation is demonstrated by the synthesis of a series of π-conjugated monodisperse (het)aryl oligoboranes. Variation of the (het)aryl moieties allowed for tunability of the optoelectronic properties of the materials. Additionally, catalytic C-C cross-coupling strategies were applied to synthesize oligofuryl-based mono- and bisboranes, as well as polymers. These studies led to very robust and highly emissive compounds (f up to 97 \%), which allow for tuning of their emission color from blue to orange. Furthermore, this work includes investigations of reaction routes to a kinetically stabilized tetraoxaporphyrinogen. Being a key aspect of this work, a full investigation of the mechanism of the catalytic Si/B exchange was carried out. Additionally, this work presents the use of borenium cations to perform B-C coupling via intermolecular electrophilic borylation. Similar to the Si/B exchange, this route is capable of giving access to diaryl(bromo)boranes.}, subject = {Konjugierte Polymere}, language = {en} } @article{CrumbachBachmannFritzeetal.2021, author = {Crumbach, Merian and Bachmann, Jonas and Fritze, Lars and Helbig, Andreas and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {17}, doi = {10.1002/anie.202100295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238996}, pages = {9290 -- 9295}, year = {2021}, abstract = {Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.}, language = {en} } @article{HahnLuxenhoferHeltenetal.2021, author = {Hahn, Lukas and Luxenhofer, Robert and Helten, Holger and Forster, Stefan and Fritze, Lars and Polzin, Lando and Keßler, Larissa}, title = {ABA Type Amphiphiles with Poly(2-benzhydryl-2-oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {17}, doi = {10.1002/macp.202100114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265124}, year = {2021}, abstract = {Thermoresponsive polymers are frequently involved in the development of materials for various applications. Here, polymers containing poly(2- benzhydryl-2-oxazine) (pBhOzi) repeating units are described for the first time. The homopolymer pBhOzi and an ABA type amphiphile comprising two flanking hydrophilic A blocks of poly(2-methyl-2-oxazoline) (pMeOx) and the hydrophobic aromatic pBhOzi central B block (pMeOx-b-pBhOzi-b-pMeOx) are synthesized and the latter is shown to exhibit inverse thermogelling properties at concentrations of 20 wt.\% in water. This behavior stands in contrast to a homologue ABA amphiphile consisting of a central poly(2-benzhydryl-2-oxazoline) block (pMeOx-b-pBhOx-b-pMeOx). No inverse thermogelling is observed with this polymer even at 25 wt.\%. For 25 wt.\% pMeOx-b-pBhOzi-b-pMeOx, a surprisingly high storage modulus of ≈22 kPa and high values for the yield and flow points of 480 Pa and 1.3 kPa are obtained. Exceeding the yield point, pronounced shear thinning is observed. Interestingly, only little difference between self-assemblies of pMeOx-b-pBhOzi-b-pMeOx and pMeOx-b-pBhOx-b-pMeOx is observed by dynamic light scattering while transmission electron microscopy images suggest that the micelles of pMeOx-b-pBhOzi-b-pMeOx interact through their hydrophilic coronas, which is probably decisive for the gel formation. Overall, this study introduces new building blocks for poly(2-oxazoline) and poly(2-oxazine)-based self-assemblies, but additional studies will be needed to unravel the exact mechanism.}, language = {en} }