@article{NazzalHowariYaslametal.2022, author = {Nazzal, Yousef and Howari, Fares M. and Yaslam, Aya and Iqbal, Jibran and Maloukh, Lina and Ambika, Lakshmi Kesari and Al-Taani, Ahmed A. and Ali, Ijaz and Othman, Eman M. and Jamal, Arshad and Naseem, Muhammad}, title = {A methodological review of tools that assess dust microbiomes, metatranscriptomes and the particulate chemistry of indoor dust}, series = {Atmosphere}, volume = {13}, journal = {Atmosphere}, number = {8}, issn = {2073-4433}, doi = {10.3390/atmos13081276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285957}, year = {2022}, abstract = {Indoor house dust is a blend of organic and inorganic materials, upon which diverse microbial communities such as viruses, bacteria and fungi reside. Adequate moisture in the indoor environment helps microbial communities multiply fast. The outdoor air and materials that are brought into the buildings by airflow, sandstorms, animals pets and house occupants endow the indoor dust particles with extra features that impact human health. Assessment of the health effects of indoor dust particles, the type of indoor microbial inoculants and the secreted enzymes by indoor insects as allergens merit detailed investigation. Here, we discuss the applications of next generation sequencing (NGS) technology which is used to assess microbial diversity and abundance of the indoor dust environments. Likewise, the applications of NGS are discussed to monitor the gene expression profiles of indoor human occupants or their surrogate cellular models when exposed to aqueous solution of collected indoor dust samples. We also highlight the detection methods of dust allergens and analytical procedures that quantify the chemical nature of indoor particulate matter with a potential impact on human health. Our review is thus unique in advocating the applications of interdisciplinary approaches that comprehensively assess the health effects due to bad air quality in built environments.}, language = {en} } @article{NaseemOsmanoğluKaltdorfetal.2020, author = {Naseem, Muhammad and Osmanoğlu, {\"O}zge and Kaltdorf, Martin and Alblooshi, Afnan Ali M. A. and Iqbal, Jibran and Howari, Fares M. and Srivastava, Mugdha and Dandekar, Thomas}, title = {Integrated framework of the immune-defense transcriptional signatures in the Arabidopsis shoot apical meristem}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms21165745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285730}, year = {2020}, abstract = {The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions.}, language = {en} } @article{NaseemOthmanFathyetal.2020, author = {Naseem, Muhammad and Othman, Eman M. and Fathy, Moustafa and Iqbal, Jibran and Howari, Fares M. and AlRemeithi, Fatima A. and Kodandaraman, Geema and Stopper, Helga and Bencurova, Elena and Vlachakis, Dimitrios and Dandekar, Thomas}, title = {Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-70253-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231317}, year = {2020}, abstract = {Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.}, language = {en} }