@article{McNeillRadtkeNieberleretal.2023, author = {McNeill, Rhiannon V. and Radtke, Franziska and Nieberler, Matthias and Koreny, Carolin and Chiocchetti, Andreas G. and Kittel-Schneider, Sarah}, title = {Generation of four human induced pluripotent stem cells derived from ADHD patients carrying different genotypes for the risk SNP rs1397547 in the ADHD-associated gene ADGRL3}, series = {Stem Cell Research}, volume = {67}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2023.103016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350099}, year = {2023}, abstract = {Single nucleotide polymorphisms (SNPs) in the ADGRL3 gene have been significantly associated with the development of ADHD, the aetiology of which remains poorly understood. The rs1397547 SNP has additionally been associated with significantly altered ADGRL3 transcription. We therefore generated iPSCs from two wild type ADHD patients, and two ADHD patients heterozygous for the risk SNP. With this resource we aim to facilitate further investigation into the complex and heterogenous pathology of ADHD. Furthermore, we demonstrate the feasibility of using magnetic activated cell sorting to allow the unbiased selection of fully reprogrammed iPSCs.}, language = {en} } @article{BartmannFischerHuebneretal.2021, author = {Bartmann, Catharina and Fischer, Leah-Maria and H{\"u}bner, Theresa and M{\"u}ller-Reiter, Max and W{\"o}ckel, Achim and McNeill, Rhiannon V. and Schlaiss, Tanja and Kittel-Schneider, Sarah and K{\"a}mmerer, Ulrike and Diessner, Joachim}, title = {The effects of the COVID-19 pandemic on psychological stress in breast cancer patients}, series = {BMC Cancer}, volume = {21}, journal = {BMC Cancer}, doi = {10.1186/s12885-021-09012-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265802}, year = {2021}, abstract = {Background: The majority of breast cancer patients are severely psychologically affected by breast cancer diagnosis and subsequent therapeutic procedures. The COVID-19 pandemic and associated restrictions on public life have additionally caused significant psychological distress for much of the population. It is therefore plausible that breast cancer patients might be particularly susceptible to the additional psychological stress caused by the pandemic, increasing suffering. In this study we therefore aimed to assess the level of psychological distress currently experienced by a defined group of breast cancer patients in our breast cancer centre, compared to distress levels preCOVID-19 pandemic. Methods: Female breast cancer patients of all ages receiving either adjuvant, neoadjuvant, or palliative therapies were recruited for the study. All patients were screened for current or previous COVID-19 infection. The participants completed a self-designed COVID-19 pandemic questionnaire, the Stress and Coping Inventory (SCI), the National Comprehensive Cancer Network (R) (NCCN (R)) Distress Thermometer (DT), the European Organization for Research and Treatment of Cancer (EORTC) QLQ C30, and the BR23. Results: Eighty-two breast cancer patients were included. Therapy status and social demographic factors did not have a significant effect on the distress caused by the COVID-19 pandemic. The results of the DT pre and during COVID-19 pandemic did not differ significantly. Using the self-designed COVID-19 pandemic questionnaire, we detected three distinct subgroups demonstrating different levels of concerns in relation to SARS-CoV-2. The subgroup with the highest levels of concern reported significantly decreased life quality, related parameters and symptoms. Conclusions: This monocentric study demonstrated that the COVID-19 pandemic significantly affected psychological health in a subpopulation of breast cancer patients. The application of a self-created "COVID-19 pandemic questionnaire"could potentially be used to help identify breast cancer patients who are susceptible to increased psychological distress due to the COVID-19 pandemic, and therefore may need additional intensive psychological support.}, language = {en} } @article{ZieglerAlmosMcNeilletal.2020, author = {Ziegler, Georg C. and Almos, Peter and McNeill, Rhiannon V. and Jansch, Charline and Lesch, Klaus-Peter}, title = {Cellular effects and clinical implications of SLC2A3 copy number variation}, series = {Journal of Cellular Physiology}, volume = {235}, journal = {Journal of Cellular Physiology}, number = {12}, doi = {10.1002/jcp.29753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218009}, pages = {9021 -- 9036}, year = {2020}, abstract = {SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.}, language = {en} } @article{McNeillZieglerRadtkeetal.2020, author = {McNeill, Rhiannon V. and Ziegler, Georg C. and Radtke, Franziska and Nieberler, Matthias and Lesch, Klaus‑Peter and Kittel‑Schneider, Sarah}, title = {Mental health dished up — the use of iPSC models in neuropsychiatric research}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02197-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235666}, pages = {1547-1568}, year = {2020}, abstract = {Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.}, language = {en} }