@article{MonteagudoMartinezLeandroGarciaetal.2021, author = {Monteagudo, Mar{\´i}a and Mart{\´i}nez, Paula and Leandro-Garc{\´i}a, Luis J. and Mart{\´i}nez-Montes, {\´A}ngel M. and Calsina, Bruna and Pulgar{\´i}n-Alfaro, Marta and D{\´i}az-Talavera, Alberto and Mellid, Sara and Let{\´o}n, Roc{\´i}o and Gil, Eduardo and P{\´e}rez-Mart{\´i}nez, Manuel and Meg{\´i}as, Diego and Torres-Ruiz, Ra{\´u}l and Rodriguez-Perales, Sandra and Gonz{\´a}lez, Patricia and Caleiras, Eduardo and Jim{\´e}nez-Villa, Scherezade and Roncador, Giovanna and {\´A}lvarez-Escol{\´a}, Cristina and Regojo, Rita M. and Calatayud, Mar{\´i}a and Guadalix, Sonsoles and Curr{\´a}s-Freixes, Maria and Rapizzi, Elena and Canu, Letizia and N{\"o}lting, Svenja and Remde, Hanna and Fassnacht, Martin and Bechmann, Nicole and Eisenhofer, Graeme and Mannelli, Massimo and Beuschlein, Felix and Quinkler, Marcus and Rodr{\´i}guez-Antona, Cristina and Casc{\´o}n, Alberto and Blasco, Mar{\´i}a A. and Montero-Conde, Cristina and Robledo, Mercedes}, title = {Analysis of telomere maintenance related genes reveals NOP10 as a new metastatic-risk marker in pheochromocytoma/paraganglioma}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers13194758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246321}, year = {2021}, abstract = {One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.}, language = {en} } @article{LiPamporakiFliedneretal.2021, author = {Li, Minghao and Pamporaki, Christina and Fliedner, Stephanie M. J. and Timmers, Henri J. L. M. and N{\"o}lting, Svenja and Beuschlein, Felix and Prejbisz, Aleksander and Remde, Hanna and Robledo, Mercedes and Bornstein, Stefan R. and Lenders, Jacques W. M. and Eisenhofer, Graeme and Bechmann, Nicole}, title = {Metastatic pheochromocytoma and paraganglioma: signs and symptoms related to catecholamine secretion}, series = {Discover Oncology}, volume = {12}, journal = {Discover Oncology}, issn = {2730-6011}, doi = {10.1007/s12672-021-00404-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-309901}, year = {2021}, abstract = {Background The presence or future development of metastatic pheochromocytomas or paragangliomas (mPPGLs) can be difficult to diagnose or predict at initial presentation. Since production of catecholamines from mPPGLs is different from non-metastatic tumors (non-mPPGLs), this study aimed to clarify whether presenting catecholamine-related signs and symptoms (cSS) might also differ. Methods The study included 249 patients, 43 with mPPGL and 206 with non-mPPGL. Clinical data at the time of biochemical diagnosis (i.e. at entry into the study) were used to generate a cumulative score of cSS for each patient. Results Patients with mPPGL were significantly younger (43.3 ± 14 vs. 48.9 ± 16.1 years) and included a lower proportion of females (39.5\% vs. 60.7\%) than patients with non-mPPGLs. Frequencies of signs and symptoms did not differ between the two groups. Patients with mPPGLs had lower (P < 0.001) urinary excretion of epinephrine (3.5 (IQR, 1.9—6.5) µg/day) than those with non-mPPGLs (19.1 (IQR, 4.3—70.2) µg/day). There was no difference in urinary excretion of norepinephrine. In patients with mPPGLs a high cSS score was associated with high urinary excretion of norepinephrine and normetanephrine. In contrast, in patients with non-mPPGLs, a high cSS was associated with high urinary excretion of epinephrine and metanephrine. Conclusion Although presenting signs and symptoms were associated with production of norepinephrine in patients with mPPGLs and of epinephrine in patients with non-mPPGLs, there were no differences in signs and symptoms between the two groups. Therefore, consideration of signs and symptoms does not appear helpful for distinguishing patients with and without mPPGLs.}, language = {en} }