@article{HiewEibeckNguemenietal.2023, author = {Hiew, Shawn and Eibeck, Leila and Nguemeni, Carine and Zeller, Daniel}, title = {The influence of age and physical activity on locomotor adaptation}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {9}, issn = {2076-3425}, doi = {10.3390/brainsci13091266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362478}, year = {2023}, abstract = {Background: Aging increases individual susceptibility to falls and injuries, suggesting poorer adaptation of balance responses to perturbation during locomotion, which can be measured with the locomotor adaptation task (LAT). However, it is unclear how aging and lifestyle factors affect these responses during walking. Hence, the present study investigates the relationship between balance and lifestyle factors during the LAT in healthy individuals across the adult lifespan using a correlational design. Methods: Thirty participants aged 20-78 years performed an LAT on a split-belt treadmill (SBT). We evaluated the magnitude and rate of adaptation and deadaptation during the LAT. Participants reported their lifelong physical and cognitive activity. Results: Age positively correlated with gait-line length asymmetry at the late post-adaptation phase (p = 0.007). These age-related effects were mediated by recent physical activity levels (p = 0.040). Conclusion: Our results confirm that locomotor adaptive responses are preserved in aging, but the ability to deadapt newly learnt balance responses is compromised with age. Physical activity mediates these age-related effects. Therefore, gait symmetry post-adaptation could effectively measure the risk of falling, and maintaining physical activity could protect against declines in balance.}, language = {en} } @article{NguemeniHomolaNakchbandietal.2020, author = {Nguemeni, Carine and Homola, Gy{\"o}rgy A. and Nakchbandi, Luis and Pham, Mirko and Volkmann, Jens and Zeller, Daniel}, title = {A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.588671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215291}, year = {2020}, abstract = {Background: Multiple sclerosis (MS) may cause variable functional impairment. The discrepancy between functional impairment and brain imaging findings in patients with MS (PwMS) might be attributed to differential adaptive and consolidation capacities. Modulating those abilities could contribute to a favorable clinical course of the disease. Objectives: We examined the effect of cerebellar transcranial direct current stimulation (c-tDCS) on locomotor adaptation and consolidation in PwMS using a split-belt treadmill (SBT) paradigm. Methods: 40 PwMS and 30 matched healthy controls performed a locomotor adaptation task on a SBT. First, we assessed locomotor adaptation in PwMS. In a second investigation, this training was followed by cerebellar anodal tDCS applied immediately after the task ipsilateral to the fast leg (T0). The SBT paradigm was repeated 24 h (T1) and 78 h (T2) post-stimulation to evaluate consolidation. Results: The gait dynamics and adaptation on the SBT were comparable between PwMS and controls. We found no effects of offline cerebellar anodal tDCS on locomotor adaptation and consolidation. Participants who received the active stimulation showed the same retention index than sham-stimulated subjects at T1 (p = 0.33) and T2 (p = 0.46). Conclusion: Locomotor adaptation is preserved in people with mild-to-moderate MS. However, cerebellar anodal tDCS applied immediately post-training does not further enhance this ability. Future studies should define the neurobiological substrates of maintained plasticity in PwMS and how these substrates can be manipulated to improve compensation. Systematic assessments of methodological variables for cerebellar tDCS are urgently needed to increase the consistency and replicability of the results across experiments in various settings.}, language = {en} }