@article{LisowskiLutyjAbazarietal.2023, author = {Lisowski, Dominik and Lutyj, Paul and Abazari, Arya and Weick, Stefan and Traub, Jan and Polat, B{\"u}lent and Flentje, Michael and Kraft, Johannes}, title = {Impact of Radiotherapy on Malfunctions and Battery Life of Cardiac Implantable Electronic Devices in Cancer Patients}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers15194830}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358008}, year = {2023}, abstract = {Purpose: This study analyses a large number of cancer patients with CIEDs for device malfunction and premature battery depletion by device interrogation after each radiotherapy fraction and compares different guidelines in regard to patient safety. Methods: From 2007 to 2022, a cohort of 255 patients was analyzed for CIED malfunctions via immediate device interrogation after every RT fraction. Results: Out of 324 series of radiotherapy treatments, with a total number of 5742 CIED interrogations, nine device malfunctions (2.8\%) occurred. Switching into back-up/safety mode and software errors occurred four times each. Once, automatic read-out could not be performed. The median prescribed cumulative dose at planning target volume (PTV) associated with CIED malfunction was 45.0 Gy (IQR 36.0-64.0 Gy), with a median dose per fraction of 2.31 Gy (IQR 2.0-3.0 Gy). The median maximum dose at the CIED at time of malfunction was 0.3 Gy (IQR 0.0-1.3 Gy). No correlation between CIED malfunction and maximum photon energy (p = 0.07), maximum dose at the CIED (p = 0.59) nor treatment localization (p = 0.41) could be detected. After excluding the nine malfunctions, premature battery depletion was only observed three times (1.2\%). Depending on the national guidelines, 1-9 CIED malfunctions in this study would have been detected on the day of occurrence and in none of the cases would patient safety have been compromised. Conclusion: Radiation-induced malfunctions of CIEDs and premature battery depletion are rare. If recommendations of national safety guidelines are followed, only a portion of the malfunctions would be detected directly after occurrence. Nevertheless, patient safety would not be compromised.}, language = {en} } @article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} }