@phdthesis{Neitz2024, author = {Neitz, Hermann}, title = {Hydrophobic recognition motifs in functionalized DNA}, doi = {10.25972/OPUS-34838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348382}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In w{\"a}ssriger Umgebung spielen hydrophobe Wechselwirkungen eine wichtige Rolle f{\"u}r die DNA. Die Einf{\"u}hrung von Modifikationen, die auf hydrophoben aromatischen Einheiten basieren, kann die Erkennung und Reaktivit{\"a}t von funktionellen Gruppen in der DNA steuern. Modifikationen k{\"o}nnen durch ein k{\"u}nstliches R{\"u}ckgrat oder in Form einer Erweiterung der Nukleobasen eingebracht werden und so zu zus{\"a}tzlichen Eigenschaften der DNA f{\"u}hren. Diese Dissertation befasst sich mit der Verwendung von hydrophoben Einheiten zur Funktionalisierung von DNA. Im ersten Teil der Arbeit wurde das Tolanmotiv (Diphenylacetylen) in Kombination mit dem acyclischen R{\"u}ckgrat von GNA und BuNA verwendet, um Erkennungseinheiten im DNA-Kontext zu erzeugen. Die gezielte Fluorierung der aromatischen Ringe des Tolan-Bausteins bildete die Grundlage f{\"u}r eine supramolekulare Sprache, die auf Aren-Fluoroaren-Wechselwirkungen basiert. Die spezifische Erkennung wurde mittels thermodynamischer, kinetischer und NMR-spektroskopischer Methoden untersucht. Im zweiten Teil der Arbeit wurden Desoxyuridin-Derivate mit einer hydrophoben aromatischen Modifikation hergestellt und in die DNA-Doppelhelix eingebaut. Die Bestrahlung mit UV-Licht f{\"u}hrte zu einer [2+2]-Cycloaddition zwischen zwei modifizierten Nukleosiden in der DNA. Das Reaktionsprodukt wurde strukturell charakterisiert und die Reaktion in verschiedenen biochemischen und nanotechnologischen DNA-Anwendungen eingesetzt.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{WagenhaeusergebVonhausen2024, author = {Wagenh{\"a}user [geb. Vonhausen], Yvonne}, title = {Thermodynamic Investigations on the Dimerization and Anti-Cooperative Self-Assembly of Dipolar Merocyanines}, doi = {10.25972/OPUS-35211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352111}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Dipolar merocyanines are very attractive supramolecular building blocks, as they combine interesting functional properties with strong, directional intermolecular interactions. The pyridine dioxocyano-pyridine (PYOP) chromophore (Chapter 2.2), used in this thesis, stands out because of its exceptionally high ground state dipole moment (g ~ 17 D), in combination with the option to retain good solubility also in unpolar solvents, by decoration with solubilizing groups. The reliable binding motif of anti-parallel -stacking due to dipole-dipole interactions has allowed the design of molecular building blocks that form assemblies of predictable geometry. The intense unstructured charge transfer UV/Vis absorption band (eg ~ 10.7 D) is a result of the dominant contribution of the zwitterionic resonance structure which brings the PYOP chromophore just beyond the cyanine limit in solvents of low polarity (c2 = 0.60, 1,4 dioxane). The high sensitivity of the S0 - S1 UV/Vis absorption band to the environment manifests itself in a pronounced negative solvatochromism and strong H-type exciton coupling within -stacked PYOP assemblies. In accordance with the classical molecular exciton theory, an increasing hypsochromic shift of the dominant absorption band of these H aggregates can be observed as the stack size increases up to about six chromophores, where it levels out at about max ~ 440 nm (CHCl3). This allows a uniquely simple estimation of the number of interacting chromophores within the self-assembled structure from a single UV/Vis absorption spectrum of an aggregate. The defined and well investigated PYOP dimer formation was employed in this thesis to probe the applicability and limitations of concentration-, temperature-, and solvent-dependent self-assembly studies (Chapter 3). Straightforward theoretical models to evaluate datasets of concentration-, temperature-, and solvent-dependent UV/Vis absorption by nonlinear regression analysis were derived for the case of dimer formation (Chapter 2.1). Although the dimer model is well known and widely applied in literature, this detailed derivation is helpful to understand assumptions and potential problems of the different approaches for the determination of thermodynamic parameters. This helps to decide on the most appropriate method to analyse a system of interest. In this regard it should be noted that covering a large portion of the self-assembly process with the experimental data is a prerequisite for the accuracy of the analysis. Additionally, many of the insights can also be transferred to other self-assembly systems like supramolecular polymerization or host-guest interactions. The concentration-dependent analysis is the most straightforward method to investigate self-assembly equilibria. No additional assumptions, besides mass balance and mass action law, are required. Since it includes the least number of parameters (only K, if M/D are known), it is the most, or even only, reliable method, to elucidate the self-assembly mechanism of an unknown system by model comparison. To cover a large concentration range, however, the compound must be soluble enough and generally sample amounts at least in the low mg scale must be available. The temperature-dependent analysis has the advantage that all thermodynamic parameters G0, H0 and S0 can be obtained from a single sample in one automated measurement. However, the accessible temperature-range is experimentally often quite limited and dependent on the solvent. For systems which do not show the transition from monomer to aggregate in a narrow temperature range, as given for, e.g., cooperative aggregation or processes with a high entropy contribution, often not the entire self-assembly process can be monitored. Furthermore, the assumptions of temperature-independent extinction coefficients of the individual species as well as temperature-independent H0 and S0 must be met. Monte Carlo simulations of data sets demonstrated that even minor changes in experimental data can significantly impact the optimized values for H0 and S0. This is due to the redundancy of these two parameters within the model framework and even small thermochromic effects can significantly influence the results. The G0 value, calculated from H0 and S0, is, however, still rather reliable. Solvent-dependent studies can often cover the entire self-assembly process from monomeric (agg = 0) to the fully aggregated state (agg = 1). However, for dyes with strong solvatochromic effects, such as the dipolar merocyanines investigated in this thesis, the results are affected. Also, the assumption of a linear relation of the binding energy G0 and the fraction of denaturating solvent f, which is based on linear free energy relationships between G0 and the solvent polarity, can lead to errors. Especially when specific solvent effects are involved. For the evaluation of experimental data by nonlinear regression, general data analysis software can be used, where user-defined fit models and known parameters can be implemented as desired. Alternatively, multiple specialized programs for analysing self-assembly data are available online. While the latter programs are usually more user-friendly, they have the disadvantage of being a "black box" where only pre-implemented models can be used without the option for the user to adapt models or parameters for a specific system. In Chapter 3 comprehensive UV/Vis absorption datasets are presented for the dimerization of merocyanine derivative 1 in 1,4-dioxane, which allowed for the first time a direct comparison of the results derived from concentration-, temperature-, and solvent-dependent self-assembly studies. The results for the binding constant K and corresponding G0 from the concentration- and temperature-dependent analysis were in very good agreement, also in comparison to the results from ITC. For the temperature-dependent analysis, though, multiple datasets of samples with different concentration had to be evaluated simultaneously to cover a meaningful part of the self-assembly process. Furthermore, a significant dependence of the optimized parameters H0 and S0 on the wavelength chosen for the analysis was observed. This can be rationalized by the small thermochromic shifts of both the monomer and the dimer UV/Vis absorption band. The results from the solvent-dependent evaluation showed the largest deviation, as expected for the highly solvatochromic merocyanine dye. However, even here by evaluation at 491 and 549 nm the deviation for G0 was only 2.5 kJ mol1 (9\%) with respect to the results from the concentration-dependent analysis (G0 = 29.1 kJ mol1). Thus, despite the strong solvatochromism of the dipolar chromophore, it can still be considered a reliable method for estimating the binding strength. Furthermore, multiple repetitions of the concentration-, temperature-, and solvent-dependent studies provided insight into the reproducibility of the results and possible sources of experimental errors. In all cases, the deviations of the results were small (G0 < 0.4 kJ mol1) and within the same range as the fit error from the nonlinear regression analysis. The insights from these studies were an important basis for the in-depth investigation of a more complex supramolecular system in Chapter 4, as a single method is often not enough to capture the full picture of a more complicated self-assembly process. To elucidate the anti-cooperative self-assembly of the chiral merocyanine 2, a combination of multiple techniques had to be applied. Solvent-dependent UV/Vis absorption studies in CH2Cl2/MCH mixtures showed the step-wise assembly of the merocyanine monomer (max(M) = 549 nm, CH2Cl2) to first a dimer (max(D) = 498 nm, CH2Cl2/MCH 15:85) by dipole-dipole interactions, and then a -stacked higher aggregate (max(H) = 477 nm, MCH), with pronounced H-type coupling. The thermodynamic evaluation of this data, however, suffered from the severe solvatochromism, especially of the monomeric species (max(M, CH2Cl2) = 549 nm, max(M, MCH) = 596 nm). Therefore, concentration-dependent studies were performed at three different temperatures (298, 323, 353 K) to elucidate the self-assembly mechanism and determine reliable thermodynamic parameters. The studies at elevated temperatures were hereby necessary, to obtain experimental data over a larger agg--range. Due to the pronounced difference in the thermodynamic driving force for dimerization and higher aggregate formation (KD/K5 = 6500) a concentration range exists in MCH where almost exclusively the dimer species of 2 is present, before further self-assembly by dispersion interactions occurs. Therefore, the data could be evaluated independently for the two self-assembly steps. The self-assembly of dimers into the higher aggregate could not be described by the isodesmic model but was fitted satisfactorily to a pentamer model. This rather small size of about ten -stacked PYOP chromophores was, furthermore, consistently indicated by AFM, VPO and DOSY NMR measurements. Based on 1D and 2D NMR data as well as the strong bisignate CD signal of the higher aggregate in combination with TD-DFT calculations, a P-helical stack is proposed as its structure. The small size can be rationalized by the anti-cooperative self-assembly mechanism and the sterical demand of the solubilizing trialkoxyphenyl and the chiral tetralin substituents. Additionally, the aliphatic shell formed by the solubilizing chains around the polar chromophore stack, can account for the exceptionally high solubility of 2 in MCH (> 15 mg mL1). These combined studies of the self-assembly process enabled the identification of suitable conditions for the investigation of fluorescence properties of the individual aggregate species. Aggregation-induced emission enhancement was observed for the almost non-emissive monomer (Fl(M) = 0.23\%), which can be rationalized by the increasing rigidification within the dimer (Fl(D) = 2.3\%) and the higher aggregate (Fl(H) = 4.5\%). The helical chirality of the PYOP decamer stack, furthermore, gave rise to a strong CPL signal with a large glum value of 0.011. The important conclusion of this thesis is that the temperature- and solvent-dependent analyses are valid alternatives to the classical concentration-dependent analysis to determine thermodynamic parameters of self-assembly equilibria. Although, for a specific supramolecular system, one approach might be favourable over the others for a variety of reasons. The experimental limitations often demand a combination of techniques to fully elucidate a self-assembly process and to gain insights in the aggregate structure. The anti-cooperative merocyanine self-assembly, which was described here for the first time for the PYOP merocyanine 2, is no exception. Besides the interest in the merocyanine assemblies from a structural and functional point of view, the insights gained from the presented studies can also be transferred to other self-assembly systems and be a guide to find the most appropriate analysis technique.}, subject = {Merocyanine}, language = {en} } @phdthesis{Roger2024, author = {Roger, Chantal}, title = {Photophysics and Spin Chemistry of Triptycene Bridge Donor-Acceptor-Triads}, doi = {10.25972/OPUS-36303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The goal of this thesis was to investigate the influence of rotational restriction between individual parts and of the varying electron density in the bridging unit of D B A systems on the exchange interaction 2J, and thus the electronic coupling between a donor state and an acceptor state. A better understanding of how to influence the underlaying spin dynamics in such donor acceptor systems can open up the door to new technologies, such as modern molecular electronics or optoelectronic devices. Therefore, three series of molecules consisting of a TAA electron donor, a TTC or ATC bridging unit and a PDI electron acceptor were studied. To investigate the influence of rotational restriction on 2J and the electronic coupling, a series of four rotationally hindered triads (chapter 6) was synthesised. The dihedral angle between the TAA and the TTC as well as between the TTC and the PDI was restricted by ortho methyl groups at the phenylene linkers of the connecting ends to the TTC bridge, producing a twist around the linking single bond which minimises the π overlap. The triads exhibit varying numbers of ortho methyl groups and therefore different degrees of rotational restriction. In order to shine light on the influence of varying electron density on 2J and the electronic coupling, a series of four substituted triptycene triads (chapter 7) was synthesised. The electron density in the TTC bridging unit was varied by electron donating and electron withdrawing groups in 12,13 position of the TTC bridging unit and thus varying its HOMO/LUMO energy. The last series of two anthracene bridge triads (chapter 8) connected both approaches by restricting the rotation with ortho methyl groups and simultaneously by varying the bridge energies. In order to obtain the electronic properties, steady state absorption and emission spectra of all triads were investigated (chapter 4). Here, all triads show spectral features associated with the separate absorption bands of TAA and the PDI moiety. The reduced QYs, compared to the unsubstituted PDI acceptor, indicate a non radiative quenching mechanism in all triads. The CV data (chapter 5) were used to calculate the energies of possible CSSs and those results were used to assign the CR dynamics into the different Marcus regions. fs TA measurements reveal that all triads form a CSS upon excitation of the PDI moiety. The lifetimes of the involved states and the rate constants were determined by global exponential fits and global target analysis. The CR dynamics upon depopulation of the CSSs were investigated using external magnetic field dependent ns TA spectroscopy. The ns TA maps show that all triads recombine via CRT pathway populating the local 3PDI state in toluene and provided the respective lifetimes. The approximate QYs of triplet formation were determined using actinometry. The magnetic field dependent ns TA data reveal the exchange interaction 2J between singlet and triplet CSS for each triad. Those magnetic field dependent ns TA data in toluene were furthermore treated using a quantum mechanical simulation (done by U.E. Steiner) to extract the rate constants kT and kS for CRT and CRS, respectively. However, the error margins of kS were rather wide. Finally, the electronic couplings between the donor and the acceptor states were obtained by combining the aforementioned experimental results of the rate constants and applying the Bixon Jortner theoretical description of diabatic ET and Andersons perturbative theory of the exchange coupling. Therefore, the experimentally determined values of 2J and the calculated values of kCS and kT were used. The rate constant kS was calculated based on the electronic coupling V1CSS 1S0. The rotationally hindered triads (chapter 6) show a strong influence of the degree of rotational restriction on the lifetimes and rate constants of the CS processes. The rate constants of CS are increasing with increasing rotational freedom. The magnetic field dependent decay data show that the exchange interactions increase with increasing rotational freedom. Based on the CR dynamics, the calculated electronic couplings of the ET processes reflect the same trend along the series. Here, only singlet couplings turned out to be strongly influenced while the triplet couplings are not. Therefore, this series shows that the ET dynamics of donor acceptor systems can strongly be influenced by restricting the rotational freedom. In the substituted triptycene triads (chapter 7), decreasing electron density in the bridging unit causes a decrease of the CS rate constants. The magnetic field dependent decay data show that with decreasing electron density in the bridge the exchange interaction decreases. The CR dynamics-based rate constants and the electronic couplings follow the same trend as the exchange interaction. This series shows that varying the HOMO/LUMO levels of the connecting bridge between donor and acceptor strongly influences the ET processes. In the anthracene bridge triads (chapter 8), the CS process is slow in both triads. The CR was fast in the anthracene triad and is slowed down in the methoxy substituted anthracene bridge triad. The increase of the exchange interaction with increasing electron density in the bridge was more pronounced than in the substituted triptycene triads. Thus, the variation of electron density in the bridge strongly influences the ET processes even though the rotation is restricted. In this thesis, it was shown that the influence of the rotational hindrance as well as the electron density in a connecting bridge have strong influence on all ET processes and the electronic coupling in donor acceptor systems. These approaches can therefore be used to modify magnetic properties of new materials.}, subject = {Rotation}, language = {en} } @phdthesis{Swain2024, author = {Swain, Asim}, title = {Helically Twisted Graphene Nanoribbons: Bottom-up Stereospecific Synthesis and Characterization}, doi = {10.25972/OPUS-36016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Over the past decade, substantial progress has been made in synthesizing atomically precise carbon nanostructures, with a focus on graphene nanoribbons (NRs) through advanced synthetic techniques. Despite these advancements, precise control over the stereochemistry of twisted NRs remains challenging. This thesis introduces a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR, utilizing enantiopure [n]helicenes as a molecular wrench to intricately dictate the overall conformation of the NR. Enantiopure [7]helicenes were stitched to the terminal K-regions of a conjugated pyrene NR using a stereospecific and site-selective palladium(II)-catalyzed annulative π-extension (APEX) reaction, resulting in a helically twisted NR with an end-to-end twist of 171°, the second-largest twist reported so far in the literature for twistacenes. The helical end-to-end twist increases with each addition of benzene ring to the central acene core, suggesting that the extra strain induced by the terminal [7]helicenes maintains such a high level of twist. The quantum chemical calculations were conducted to investigate the impact of twisting on the conformational population. At room temperature, the central backbone of the nanoribbon adopts the twisted helicity opposite to that of the attached [7]helicene, constituting around 99\% of the molecular population. For instance, (P)-[7]helicenes produce a left-handed helical nanoribbon, while (M)-[7]helicenes produce a right-handed helical nanoribbon. In the presence of helicenes of opposite chirality, the nanoribbon adopts a waggling conformation. The helically twisted nanoribbons are conformationally robust, as variable temperature chiroptical measurements showed no change in CD and CPL spectra. The proposed strategy, involving the late-stage addition of [n]helicene units through the APEX reaction, appears promising for streamlining the synthesis of diverse cove edge NR variants with desired conformations. In addition to single-handed helically twisted nanoribbons, the symmetry-based functional properties of C2 and C1 symmetric pyrene-fused single and double [n]helicene compounds were studied. Owing to its higher structural rigidity, the C1 symmetric heptagonal ring-containing molecules exhibited exceptional configurational stability along with remarkable chiroptical properties compared to their C2 symmetric as well as pristine helicene congeners.}, subject = {Helicene}, language = {en} } @phdthesis{Weh2024, author = {Weh, Manuel}, title = {Chiral Perylene Bisimide Cyclophanes}, doi = {10.25972/OPUS-31529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-315296}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This work illustrates how the targeted tailoring of supramolecular cavities can not only accomplish high binding due to optimized stereoelectronic shape matches between host and guest but also how molecular engineering of the binding site by a refined substitution periphery of the cavity makes enantiospecific guest recognition and host mediated chirality transfer feasible. Moreover, an enzyme mimic, following the Pauling-Jencks model of enzyme catalysis was realized by the smart design of a PBI host composed of moderately twisted chromophores, which drives the substrate inversion according to the concepts of transition state stabilization and ground state destabilization. The results of this thesis contribute to a better understanding of structure-specific interactions in host-guest complexes as well as the corresponding thermodynamic and kinetic properties and represent an appealing blueprint for the design of new artificial complex structures of high stereoelectronic shape complementarity in order to achieve the goal of sophisticated supramolecular receptors and enzyme mimicry.}, language = {en} } @phdthesis{Mahl2023, author = {Mahl, Magnus}, title = {Polycyclic Aromatic Dicarboximides as NIR Chromophores, Solid-State Emitters and Supramolecular Host Platforms}, doi = {10.25972/OPUS-23462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234623}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present thesis introduce different synthetic strategies towards a variety of polycyclic aromatic dicarboximides (PADIs) with highly interesting and diverse properties. This included tetrachlorinated, tetraaryloxy- and tetraaryl-substituted dicarboximides, fused acceptor‒donor(‒acceptor) structures as well as sterically shielded rylene and nanographene dicarboximides. The properties and thus the disclosure of structure‒property relationships of the resulting dyes were investigated in detail among others with UV‒vis absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry and single crystal X-ray analysis. For instance, some of the fused and substituted PADIs offer strong absorption of visible and near infrared (NIR) light, NIR emission and low-lying LUMO levels. On the contrary, intriguing optical features in the solid-state characterize the rylene dicarboximides with their bulky N-substituents, while the devised sterically enwrapped nanographene host offered remarkable complexation capabilities in solution.}, subject = {Organische Chemie}, language = {en} } @phdthesis{Noll2023, author = {Noll, Niklas}, title = {Second Coordination Sphere Engineering in Macrocyclic Ruthenium Water Oxidation Catalysts}, doi = {10.25972/OPUS-30533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-305332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {About 2.4 billion years ago, nature has fundamentally revolutionized life on earth by inventing the multi-subunit protein complex photosystem II, the only molecular machine in nature that catalyzes the thermodynamically demanding photosynthetic splitting of water into oxygen and reducing equivalents. Nature chose a distorted Mn4CaO5 cluster as catalyst, better known as oxygen-evolving complex (OEC), thus recognizing the need for transition metals to achieve high-performance catalysts. The curiosity has always driven mankind to mimic nature's achievements, but the performance of natural enzymes such as the oxygen-evolving complex in photosystem II remain commonly unmatched. An important role in fine-tuning and regulating the activity of natural enzymes is attributed to the surrounding protein domain, which facilitates substrate preorganization within well-defined nanoenvironments. In light of growing energy demands and the depletion of fossil fuels, the unparalleled efficiency of natural photosynthesis inspires chemists to artificially mimic its natural counterpart to generate hydrogen as a 'solar fuel' through the light-driven splitting of water. As a result, significant efforts have been devoted in recent decades to develop molecular water oxidation catalysts based on earth-abundant transition metals and the discovery of the Ru(bda) (bda: 2,2' bipyridine-6,6'-dicarboxylate) catalyst family enabled activities comparable to the natural OEC. Similar to the natural archetypes, the design of homogeneous catalysts that interplay judiciously with the second coordination sphere of the outer ligand framework proved to be a promising concept for catalyst design. In this present thesis, novel supramolecular design approaches for enzyme like activation of substrate water molecules for the challenging oxidative water splitting reaction were established via tailor-made engineering of the secondary ligand environment of macrocyclic Ru(bda) catalysts.}, subject = {Katalyse}, language = {en} } @phdthesis{Seitz2023, author = {Seitz, Florian}, title = {Synthesis, enzymatic recognition and antiviral properties of modified purine nucleosides}, doi = {10.25972/OPUS-31323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313238}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Beyond the four canonical nucleosides as primary building blocks of RNA, posttranscriptional modifications give rise to the epitranscriptome as a second layer of genetic information. In eukaryotic mRNA, the most abundant posttranscriptional modification is N6-methyladenosine (m6A), which is involved in the regulation of cellular processes. Throughout this thesis, the concept of atomic mutagenesis was employed to gain novel mechanistic insights into the substrate recognition by human m6A reader proteins as well as in the oxidative m6A demethylation by human demethylase enzymes. Non-natural m6A atomic mutants featuring distinct steric and electronic properties were synthesized and incorporated into RNA oligonucleotides. Fluorescence anisotropy measurements using these modified oligonucleotides revealed the impact of the atomic mutagenesis on the molecular recognition by the human m6A readers YTHDF2, YTHDC1 and YTHDC2 and allowed to draw conclusions about structural prerequisites for substrate recognition. Furthermore, substrate recognition and demethylation mechanism of the human m6A demethylase enzymes FTO and ALKBH5 were analyzed by HPLC-MS and PAGE-based assays using the modified oligonucleotides synthesized in this work. Modified nucleosides not only expand the genetic alphabet, but are also extensively researched as drug candidates. In this thesis, the antiviral mechanism of the anti-SARS-CoV-2 drug remdesivir was investigated, which causes delayed stalling of the viral RNA-dependent RNA polymerase (RdRp). Novel remdesivir phosphoramidite building blocks were synthesized and used to construct defined RNA-RdRp complexes for subsequent studies by cryogenic electron microscopy (cryo-EM). It was found that the 1'-cyano substituent causes Rem to act as a steric barrier of RdRp translocation. Since this translocation barrier can eventually be overcome by the polymerase, novel derivatives of Rem with potentially improved antiviral properties were designed.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Stiller2023, author = {Stiller, Carina}, title = {Synthesis and applications of modified nucleosides and RNA nucleotides}, doi = {10.25972/OPUS-31135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the 'central dogma of life'. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Mahlmeister2023, author = {Mahlmeister, Bernhard}, title = {Twisted Rylene Bisimides for Organic Solar Cells and Strong Chiroptical Response in the Near Infrared}, doi = {10.25972/OPUS-34610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The chirality of the interlocked bay-arylated perylene motif is investigated upon its material prospect and the enhancement of its chiroptical response to the NIR spectral region. A considerable molecular library of inherently chiral perylene bisimides (PBIs) was utilized as acceptors in organic solar cells to provide decent device performances and insights into the structure-property relationship of PBI materials within a polymer blend. For the first time in the family of core-twisted PBIs, the effects of enantiopurity on the device performance was thoroughly investigated. The extraordinary structural sensitivity of CD spectroscopy served as crucial analytical tool to bridge the highly challenging gap between molecular properties and device analytics by proving the excitonic chirality of a helical PBI dimer. The chirality of this perylene motif could be further enhanced on a molecular level by both the expansion and the enhanced twisting of the π-scaffold to achieve a desirable strong chiroptical NIR response introducing a new family of twisted QBI-based nanoribbons. These achievements could be substantially further developed by expanding this molecular concept to a supramolecular level. The geometrically demanding supramolecular arrangement necessary for the efficient excitonic coupling was carefully encoded into the molecular design. Accordingly, the QBIs could form the first J-type aggregate constituting a fourfold-stranded superhelix of a rylene bisimide with strong excitonic chirality. Therefore, this thesis has highlighted the mutual corroboration of experimental and theoretical data from the molecular to the supramolecular level. It has demonstrated that for rylene bisimide dyes, the excitonic contribution to the overall chiroptical response can be designed and rationalized. This can help to pave the way for new organic functional materials to be used for chiral sensing or chiral organic light-emitting devices.}, subject = {Molek{\"u}l}, language = {en} } @phdthesis{Bauer2023, author = {Bauer, Christian}, title = {Towards ecological and efficient electrochemical energy storage in supercapacitors and sodium ion batteries using onion-like carbon}, doi = {10.25972/OPUS-31795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317956}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In this thesis, the usage of onion-like carbon (OLC) for energy storage applications was researched regarding sustainability, performance and processability. This work targets to increase the scientific understanding regarding the role of OLC in electrodes and to facilitate a large-scale production, which is the foundation for commercial application. Research was devoted to increase the knowledge in the particular field, to yield synergistic approaches and a shared value regarding sustainability and performance.}, subject = {Elektrochemie}, language = {en} } @phdthesis{Menekşe2023, author = {Menek{\c{s}}e, Kaan}, title = {Fabrication of Organic Solar Cells, Screening of Non-Fullerene Acceptors and the Investigation of their Intermolecular Interactions}, doi = {10.25972/OPUS-29112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In this thesis, intermolecular acceptor-acceptor interactions in organic solar cells based on new non-fullerene acceptors are addressed. For this purpose, first the reproducibility of organic electronic devices was tested on a new facility for their fabrication. This was followed by the screening for new acceptor materials. Based on this, three molecular systems were investigated with regard to their acceptor-acceptor interactions and their influence on solar cell efficiency.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Scheitl2023, author = {Scheitl, Carolin P. M.}, title = {In vitro selected ribozymes for RNA methylation and labeling}, doi = {10.25972/OPUS-33004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this work was the development and application of highly efficient RNA catalysts for the site-specific modification of RNA with special focus on methylation. In the course of this thesis, the first methyltransferase ribozyme (MTR1), which uses m6G as the methyl group donor was developed and further characterized. The RNA product was identified as the natural modification m1A. X-Ray crystallography was used to solve the 3D structure of the ribozyme, which directly suggested a plausible reaction meachnism. The MTR1 ribozyme was also successfully repurposed for a nucleobase transformation reaction of a purine nucleoside. This resulted in a formyl-imidazole moiety directly on the intact RNA, which was directly used for further bioconjugation reactions. Finally, additional selections and reselections led to the identification of highly active alkyltransferase ribozymes that can be used for the labeling of various RNA targets}, subject = {Methylierung}, language = {en} } @phdthesis{SanchezNaya2023, author = {S{\´a}nchez Naya, Roberto}, title = {Synthesis and Characterization of Dye-Containing Covalent Organic Frameworks}, doi = {10.25972/OPUS-28899}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288996}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present thesis adress the synthesis and characterization of novel COFs that contain dye molecules as integral components of the organic backbone. These chromophore-containing frameworks open new research lines in the field and call for the exploration of applications such as catalysis, sensing, or in optoelectronic devices. Initially, the fabrication of organic-inorganic composites by the growth of DPP TAPP COF around functionalized iron oxide nanoparticles is reported. By varying the ratio between inorganic nanoparticles and organic COFs, optoelectronic properties of the materials are adjusted. The document also reports the synthesis of a novel boron dipyrromethene-containing (BODIPY) COF. Synthesis, full characterization and the scope of potential applications with a focus on environmental remediation are discussed in detail. Last, a novel diketopyrrolopyrrole-containing (DPP) DPP-Py-COF based on the combination of DDP and pyrene building blocks is presented. The very low bandgap of these materials and initial investigations on the photosensitizing properties are discussed.}, subject = {Organische Chemie}, language = {en} } @phdthesis{Toksabay2022, author = {Toksabay, Sinem}, title = {Synthesis and on surface self assembly properties of pi extended tribenzotriquinacenes}, doi = {10.25972/OPUS-24573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Tribenzotriquinacene (TBTQ) is a polycyclic aromatic framework with a particularly rigid, C3v symmetrical, bowl-shaped core bearing three mutually fused indane wings. It has been discussed as a defect center for a nanographene by Kuck and colleagues. Therefore, extended TBTQ structures are promising models for saturated defect structures in graphene and graphene like molecules and could be used to investigate the role of defects for the electronic properties of graphene. With this motivation, three different pi-extended TBTQ derivatives have been synthesized in this work. Several different Scholl reaction conditions were tried to obtain fully annulated product of hexaphenyl substituted TBTQ. The desired benzannulated TBTQ derivative could not be obtained due to unfavourable electron density in the respective positions of the molecule and increased reactivity of the bay position of the precursor. As an another method for benzannulation is the on-surface synthesis of graphene flakes and can be carried out using electron beams e.g. in a tunneling microscope (STM). According to our previous research, the parent system TBTQ and centro-methyl TBTQ on silver and gold surfaces showed that the gas phase deposition of these molecules gives rise to the formation of highly ordered two-dimensional assemblies with unique structural features. This shows the feasibility for the formation of defective graphene networks starting from the parent structures. Therefore, the same deposition technique was used to deposit Me-TBTQ(OAc)3Ph6, and investigate the molecular self-assembly properties directly on the surface of Cu (111). In summary, the substrate temperature dependent self-assembly of Me-TBTQ(OAc)3Ph6 molecules on Cu(111), shows the following evolution of orientations. At room temperature, molecules form dimers, which construct a higher-coverage honeycomb lattice. Furthermore, one of the acetyl group located in the bay positions of the TBTQ core is cleaved and the remaining two induce the metal-molecule interaction. It was presumed that by increasing the temperature to 393 K, the remaining acetyl and methyl groups would beeliminated from the molecular structure.In addition, the smaller TBTQ-Ph6 molecules preferably lie flat on Cu(111) crystal and allowing the molecules to settle into a C3-symmetry and form a dense hexagonal structure.}, subject = {Triquinacenderivate}, language = {en} } @phdthesis{Schindler2022, author = {Schindler, Dorothee}, title = {Water Oxidation with Multinuclear Ruthenium Catalysts}, doi = {10.25972/OPUS-23309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233093}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In terms of the need of environmentally benign renewable and storable energy sources, splitting of water into hydrogen and oxygen by using sunlight is a promising approach. Hereby, water oxidation catalysts (WOCs) are required to perform the water oxidation comprising the transfer of four electrons to provide the reducing equivalents for producing hydrogen. The class of Ru(bda) (bda = 2,2'-bipyridine-6,6'-dicarboxylate) catalysts has proven to be efficient for this reaction. In this thesis, ligand exchange processes in Ru(bda) complexes have been analyzed and the formation of multinuclear macrocyclic WOCs was studied. Based on the knowledge acquired by these studies, new multinuclear cyclic Ru(bda) complexes have been synthesized and their catalytic efficiencies in homogeneous water oxidation have been investigated. Going one step further for setting up functional devices, molecular WOCs have been immobilized on conducting or semiconducting supporting materials. Direct anchoring on carbon nanotubes generated a promising materials for further applications.}, subject = {Rutheniumkomplexe}, language = {en} } @phdthesis{Dietzsch2022, author = {Dietzsch, Julia}, title = {Nucleic acid-mediated fluorescence activation and chromophore assembly}, doi = {10.25972/OPUS-25976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259761}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nucleic acids are not only one of the most important classes of macromolecules in biochemistry but also a promising platform for the defined arrangement of chromophores. Thanks to their precise organization by directional polar and hydrophobic interactions, oligonucleotides can be exploited as suitable templates for multichromophore assemblies with predictable properties. To expand the toolbox of emissive, base pairing nucleobase analogs several barbituric acid merocyanine (BAM) chromophores with tunable spectroscopic properties were synthesized and incorporated into RNA, DNA and glycol nucleic acid (GNA) oligonucleotides. A multitude of duplexes containing up to ten BAM chromophores was obtained and analysis by spectroscopic methods revealed the presence of dipolarly coupled merocyanine aggregates with properties strongly dependent on the chromophore orientation toward each other and the backbone conformation. These characteristics were exploited for various applications such as FRET pair formation and polymerase chain reaction (PCR) experiments. The observed formation of higher-order aggregates implies future applications of these new oligonucleotide-chromophore systems as light-harvesting DNA nanomaterials. Besides oligonucleotide templated covalent assembly of chromophores also non-covalent nucleic acid-chromophore complexes are a broad field of research. Among these, fluorogenic RNA aptamers are of special interest with the most versatile ones based on derivatives of the GFP chromophore hydroxybenzylidene imidazolone (HBI). Therefore, new HBI-derived chromophores with an expanded conjugated system and an additional exocyclic amino group for an enhanced binding affinity were synthesized and analyzed in complex with the Chili aptamer. Among these, structurally new fluorogenes with strong fluorescence activation upon binding to Chili were identified which are promising for further derivatization and application as color-switching sensor devices for example.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Bold2022, author = {Bold, Kevin}, title = {Macrocyclic Oligothiophene Bridged Perylene Bisimide Donor-Acceptor Dyads}, doi = {10.25972/OPUS-27192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A series of donor-acceptor macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide have been synthesized via a platinum-mediated cross-coupling strategy. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Crystal structure analysis of the macrocycles revealed insights into the bridge arrangements. The properties of the macrocyclic bridges were compared to linear oligothiophene reference compounds which itself exhibited an unusual electrochemical effect.}, subject = {Perylenbisdicarboximide}, language = {en} } @phdthesis{Smolan2022, author = {Smolan, Willi}, title = {Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation}, doi = {10.25972/OPUS-27873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 \%, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N'-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 \% were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 \% due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 \% conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 \%. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 \%) and negatively charged functionalities via phosphonamide moieties (100 \%) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests.}, subject = {Wasserl{\"o}sliche Polymere}, language = {en} } @phdthesis{Liaqat2022, author = {Liaqat, Anam}, title = {Artificial Evolution of Nucleic Acid Catalysts and their Use for Studying RNA}, doi = {10.25972/OPUS-28311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283111}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {RNA molecules play diverse roles in biological systems. Post-transcriptional RNA modifications and dynamic structures enhance the functional diversity of RNA. A prerequisite for studying their biological significance is the availability of reliable methods for the detection of RNA modifications and structures. Several promising approaches have been developed in the last few decades; however, efficient, and versatile tools are still required to study the dynamic features of RNA. This thesis focuses on the development of nucleic acid catalysts as a tool to address the current needs in studying RNA. The major part of this thesis aimed at the development of deoxyribozymes as a tool for the detection of RNA modifications. Using in vitro selection from a random DNA library, we found deoxyribozymes that are sensitive to N 6 -isopentenyladenosine (i6A), a native tRNA modification and structural analogue of m6A. The in vitro evolution identified three classes of DNA enzymes: AA, AB08, and AC17 DNAzymes that showed distinct response to i6A modification and showed strong discrimination between structural analogues, i.e., m6A and i6A. In the continuation of the project, we attempted to develop RNA-cleaving deoxyribozymes that differentially respond to monomethylated cytidine isomers, 3-methylcytidine (m3C), N4 - methylcytidine (m4C), and 5-methylcytidine (m5C). Several deoxyribozymes were identified from in vitro selection, which are selective for a specific methylated cytidine isomer. The characterization of AL112, AM101, AN05, and AK104 catalysts confirmed the successful evolution of modification-specific and general deoxyribozymes that showed a broad substrate scope. In order to accelerate the DNAzymes discovery, a high throughput sequencing method (DZ-seq) was established that directly quantifies the RNA cleavage activity and cleavage site from deep sequencing data. The libraries contained information about cleavage status, cleavage site and sequence of deoxyribozymes and RNA substrate. The fraction cleaved (FC) data obtained from Dz-seq was validated for a subset of deoxyribozmes using conventional gel based kinetic assay and showed a good linear correlation (R2 = 0.91). Dz-seq possesses a great potential for the discovery of novel deoxyribozymes for the analysis of various RNA modifications in the future. The second objective of the current study was the development of structure-specific RNA labeling ribozymes. Here, we attempted to develop ribozymes that targets RNA of interest by structure-specific interaction rather than base-pairing and focused on a specific RNA G-quadruplex as the target. Two subsequent selection experiments led to the identification of the adenylyltransferase ribozymes AO10.2 and AR9. The partial characterization of these catalysts showed that A010.2 was unable to recognize intact BCL2 structure, but it turned out as the first reported trans-active ribozyme that efficiently labeled uridine in a defined substrate RNA hybridized to the ribozyme. The other ribozyme AR9 was shown to serve as a trans-active, self-labeling ribozyme that catalyzed adenylyl transferase reaction in the presence of the intact BCL2 sequence. Based on these preliminary findings, we envision that AR9 could potentially serve as a reporter RNA by self-labeling in the presence of an RNA G-quadruplex. However, both AO10.2 and AR9 still require more detailed characterization for their potential applications.}, language = {en} } @phdthesis{Gruene2022, author = {Gr{\"u}ne, Marvin}, title = {Solid-state NMR Spectroscopic, X-Ray Diffraction and Quantum Chemical Investigations of the Crystalline Cancer Drug Paclitaxel and Paclitaxel incorporated into Polymer Micelles}, doi = {10.25972/OPUS-23719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Paclitaxel (PTX) is one of the leading drugs against breast and ovarian cancer. Due to its low solubility, treatment of the patients with this drug requires a very well-suited combination with a soluble pharmaceutical excipient to increase the bioavailability and reduce the strong side ef-fects. One efficient way to achieve this in the future could be the incorporation of PTX into pol-ymeric micelles composed of poly(2-oxazoline) based triblock copolymers (POL) which ena-bles PTX loadings of up to 50 wt.\%. However, structural information at an atomic level and thus the knowledge of interaction sites within these promising but complex PTX-POL formula-tions were not yet available. Such results could support the future development of improved excipients for PTX and suitable excipients for other pharmaceutical drugs. Therefore, a solid-state MAS NMR investigation of these amorphous formulations with different POL-PTX com-positions was performed in this thesis as this gives insights of the local structure at an atomic level in its solid state. NMR in solution showed very broad 13C signals of PTX for this system due to the reduced mobility of the incorporated drug which exclude this as an analytical meth-od. In a first study, crystalline PTX was structurally characterized by solid-state NMR as no com-plete 13C spectrum assignment and no 1H NMR data existed for the solid state. In addition, the asymmetric unit of the PTX crystal structure consists of two molecules (Z'=2) that can only be investigated in its solid state. As crystalline PTX in total has about 100 different 13C and 1H chemical shifts with very small differences due to Z'=2, and furthermore, its unit cell consisting of more than 900 atoms, accompanying GIPAW (CASTEP) calculations were required for NMR signal assignments. These calculations were performed using the first three available purely hydrous and anhydrous PTX structures, which were determined by XRD and published by Vel-la-Zarb et al. in 2013. Within this thesis, is was discovered that two investigated batches of commercially available PTX from the same supplier both contained an identical and so far un-known PTX phase that was elucidated by PXRD as well as solid-state NMR data. One of the two batches consists of an additional phase that was shown to be very similar to a known hy-drated phase published in 2013.[1] By heating the batch with the mixture of the two phases un-der vacuum, it is transformed completely to the new dry phase occurring in both PTX batches. Since the drying conditions to obtain anhydrous PTX in-situ on the PXRD setup described by Vella-Zarb et. al.[1] were much softer than ours, we identify our dry phase as a relaxed version of their published anhydrate structure. The PXRD data of the new anhydrate phase was trans-ferred into a new structural model, which currently undergoes geometry optimization. Based on solid-state NMR data at MAS spinning frequencies up to 100 kHz, a 13C and a partial 1H signal assignment for the new anhydrous structure were achieved. These results provided sufficient structural information for further investigations of the micellar POL-PTX system. In a second study, the applicability and benefit of two-dimensional solid-state 14N-1H HMQC MAS NMR spectra for the characterization of amorphous POL-PTX formulations was investi-gated. The mentioned technique has never been applied to a system of similar complexity be-fore and was chosen because around 84\% of the small-molecule drugs contain at least one nitrogen atom. In addition, the number of nitrogen atoms in both POL and PTX is much smaller than the number of carbons or hydrogens, which significantly reduces the spectral complexity. 14N has a natural abundance of 99.6\% but leads to quadrupolar broadening due to its nuclear spin quantum number I = 1. While this is usually undesirable due to broadening in the resulting 1D 14N NMR spectra, this effect is explicitly used in the 2D 14N-1H HMQC MAS experiment. The indirect 14N measurement can avoid the broadening while maintaining the advantage of the high natural abundance and making use of the much more dispersed signals due to the additional quadrupolar shifts as compared to 15N. This measurement method could be successfully applied to the complex amorphous POL-PTX mixtures. With increasing PTX loading of the formulations, additional peaks arise as spatial proximities of the amide nitrogens of POL to NH or OH groups of PTX. In addition, the 14N quadrupolar shift of these amide nitrogens decreases with increasing PTX content indicating a more symmetric nitrogen environment. The latter can be explained by a transformation of the trigonal planar coordination of the tertiary amide nitrogen atoms in pure POL towards a more tetrahedral environment upon PTX loading induced by the formation of hydrogen bonds with NH/OH groups of PTX. In the third and last project, the results of the two abovementioned studies were used and ex-tended by solid state 13C and two-dimensional 1H-13C as well as 1H-1H MAS NMR data with the aim to derive a structural model of the POL-PTX formulations at an atomic level. The knowledge of the NMR signal assignments for crystalline PTX was transferred to amorphous PTX (present in the micelles of the formulations). The 13C solid-state NMR signals were evalu-ated concerning changes in chemical shifts and full widths of half maximum (FWHM) for the different PTX loadings. In this way, the required information about possible interaction sites at an atomic level becomes available. Due to the complexity of these systems, such proximities often cannot be assigned to special atoms, but more to groups of atoms, as the individual de-velopments of line widths and line shifts are mutually dependent. An advantageous aspect for this analysis was that pure POL already forms unloaded micelles. The evaluation of the data showed that the terminal phenyl groups of PTX seem to be most involved in the interaction by the establishment of the micelle for lowest drug loading and that they are likely to react to the change in the amount of PTX molecules as well. For the incorporation of PTX in the micelles, the following model could be obtained: For lowest drug loading, PTX is mainly located in the inner part of the micelles. Upon further increasing of the loading, it progressively extends to-ward the micellar shell. This could be well shown by the increasing interactions of the hydro-phobic butyl chain of POL and PTX, proceeding in the direction of the polymer backbone with rising drug load. Furthermore, due to the size of PTX and the hydrodynamic radius of the mi-celles, even at the lowest loading, the PTX molecules partially reach the core-shell interface of the micelle. Upon increasing the drug loading, the surface coverage with PTX clusters increas-es based on the obtained model approach. The latter result is supported by DLS and SANS data of this system. The abovementioned results of the 14N-1H HMQC MAS investigation of the POL-PTX formulations support the outlined model. As an outlook, the currently running geometry optimization and subsequently scheduled calcu-lation of the chemical shieldings of the newly obtained anhydrous PTX crystal structure can further improve the solid-state NMR characterization through determination of further spatial proximities among protons using the existing 2D 1H(DQ)-1H(SQ) solid-state MAS NMR spec-trum at 100 kHz rotor spinning frequency. The 2D 14N-1H HMQC MAS NMR experiments were shown to have great potential as a technique for the analysis of other disordered and amor-phous drug delivery systems as well. The results of this thesis should be subsequently applied to other micellar systems with varying pharmaceutical excipients or active ingredients with the goal of systematically achieving higher drug loadings (e.g., for the investigated PTX, the similar drug docetaxel or even different natural products). Additionally, it is planned to transfer the knowledge to another complex polymer system containing poly(amino acids) which offers hy-drogen bonding donor sites for additional intermolecular interactions. Currently, the POL-PTX system is investigated by further SANS studies that may provide another puzzle piece to the model as complementary measurement method in the future. In addition, the use of MD simu-lations might be considered in the future. This would allow a computerized linking of the differ-ent pieces of information with the aim to determine the most likely model.}, subject = {Wirkstoff-Tr{\"a}ger-System}, language = {en} } @phdthesis{Selby2022, author = {Selby, Joshua}, title = {Design and Chiroptical Properties of Chirally Substituted Indolenine Squaraine Mono-, Oligo-, and Polymers}, doi = {10.25972/OPUS-28206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A series of monomeric chirally substituted indolenine squaraine monomers were successfully synthesized and utilized for the construction of various oligo- and polymers, in order to study their chiroptical properties in terms of exciton chirality. The quaternary carbon atom at the 3-position of the indolenine subunit, as well as the alkyl side chain attached to the indolenine nitrogen were selected as the most suitable site for chiral functionalization. For the C(3)-chiral derivatives, two synthetic routes depending on the desired substitution at the stereogenic center were established. The chiral side chains were prepared via Evans asymmetric alkylation where the resulting branching point at the 2 position constituted the chiral center. While the chiral substitution only had minor effects on the linear optical properties and geometric structure of the chromophore, all compounds exhibited a distinct and measurable CD signal that correlated with the distance of the chiral center to the central chromophore. Polymers bearing chiral side chains exhibited a solvent- and temperature-dependent helix-coil equilibrium, which was influenced by the type of side chain used. CD spectroscopy revealed the helical conformation to possess a preferred twist sense, and temperature-dependent measurements showed the degree of homohelicity to be nearly complete in certain cases. Furthermore, a CPL signal was able to be obtained for the helical conformer of one polymer. Various (co)oligo- and polymers comprising the C(3)-chiral monomers only displayed a solvent-independent J-type absorption behavior and thus did not form helical conformations in solution. CD spectroscopy revealed a solvent-dependent adoption of quasi-enantiomeric conformers, which was elucidated by quantum chemical TDDFT calculations.}, subject = {Squaraine}, language = {en} } @phdthesis{Merz2022, author = {Merz, Viktor}, title = {Funktionalisierung und Untersuchung von Nanodiamanten f{\"u}r biomedizinische und sensorische Anwendungen}, doi = {10.25972/OPUS-24588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245888}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nanodiamant (ND) ist ein vielseitiges und vielversprechendes Material f{\"u}r Bio-Anwendungen. Trotz vieler Bem{\"u}hungen bleibt die Agglomeration von Nanodiamant und die unspezifische Adsorption von Proteinen an der ND-Oberfl{\"a}che bei Kontakt mit Biofl{\"u}ssigkeiten ein großes Hindernis f{\"u}r biomedizinische Anwendungen. Eine Auswahl verzweigter und linearer Molek{\"u}le mit {\"u}berlegener F{\"a}higkeit zur kolloidalen Stabilisierung von Nanopartikeln in Salz- und Zellmedienumgebung, f{\"u}r bis zu 30 Tage, wurde an die ND-Oberfl{\"a}che angebracht. Das Baukastensystem mit Azid als Außengruppen bietet eine große Vielfalt an Bindungen mit vielen Molek{\"u}len, wie z. B. Medikamenten, Farbstoffen oder Targeting-Molek{\"u}len. Das Anh{\"a}ngen von z. B. Zwitterionen an die Kette sch{\"u}tzt die ND-Oberfl{\"a}che vor der Bildung einer Proteinkorona, wenn die Partikel mit proteinhaltigen Biofl{\"u}ssigkeiten in Kontakt kommen. Die Ergebnisse der thermogravimetrischen Analyse der Beladung der ND-Oberfl{\"a}che zeigen eine signifikante Verhinderung der Proteinadsorption von bis zu 98 \% im Vergleich zu NDs ohne zwitterionische Kopfgruppen und eine lange kolloidale Stabilit{\"a}t, wenn Tetraethylenglykol (TEG) an die Oberfl{\"a}che gebunden wird. Die Vielseitigkeit des modularen Systems, um nicht nur zwitterionische Ketten, sondern auch klickbare funktionelle Molek{\"u}le an fluoreszierende Nanodiamanten (fNDs) zu binden, zeigt das Potenzial des Systems am Nanodiamanten. Unter Verwendung von Defektstrukturen, wie Stickstoff-Vakanz-Zentren (NV), k{\"o}nnen Diamantpartikel aufgrund ihres weitgehend ungiftigen Verhaltens als fluoreszierende Nanodiamanten (fNDs) f{\"u}r photostabile Markierung, Bioimaging und nanoskalige Sensorik in lebenden Zellen und Organismen verwendet werden. Um die fND-Oberfl{\"a}che zu funktionalisieren, wurde eine neuartige Mahltechnik mit Diazoniumsalzen etabliert, um ein Pfropfen auf wenig reaktive HPHT-fNDs durchzuf{\"u}hren, was zu einer hohen Oberfl{\"a}chenbeladung und einem hohen negativen Zetapotenzial f{\"u}hrt. Die Kombination der Vorteile von TEG und zwitterionhaltigen Gruppen mit der F{\"a}higkeit zum Targeting von Antik{\"o}rpern auf fND best{\"a}tigt zum ersten Mal die verbesserte kolloidale Stabilit{\"a}t in Experimenten mit lebenden Zellen. Dar{\"u}ber hinaus deuten die Ergebnisse auf eine verbesserte Corona-Abstoßung im Vergleich zu fND ohne zwitterionhaltige Kopfgruppen hin. Infolgedessen wurden die Zirkulationszeiten von 4 (fND ohne Zwitterionenkette, aber mit Antik{\"o}rper) auf 17 (mit Antik{\"o}rper und Zwitterionenketten) Stunden vergr{\"o}ßert. In nicht-biomedizinischen Anwendungen kann das modulare System als Sonde f{\"u}r Schwermetalle durch die Anbindung von Farbstoffen verwendet werden. Die Detektion von Metallen in verschiedenen Umgebungen mit hoher Selektivit{\"a}t und Spezifit{\"a}t ist eine der Voraussetzungen f{\"u}r den Kampf gegen die Umweltverschmutzung mit diesen Elementen. Pyrene sind gut geeignet und weit bekannt f{\"u}r die Fluoreszenzsensorik in verschiedenen Medien. Das angewandte Sensorprinzip beruht typischerweise auf der Bildung von intra- und intermolekularen Excimeren, was jedoch den Empfindlichkeitsbereich aufgrund der Maskierung von z.B. Quenching-Effekten durch die Excimer-Emission einschr{\"a}nkt. Diese Studie zeigt einen hochselektiven, strukturstabilen chemischen Sensor, der auf der monomeren Fluoreszenz von Pyrenanteilen mit Triazolgruppen basiert. Dieser Sensor kann Cu2+, Pb2+ und Hg2+ in organischen L{\"o}sungsmitteln {\"u}ber einen weiten Konzentrationsbereich quantitativ nachweisen, auch in Gegenwart von ubiquit{\"a}ren Ionen wie Na+, K+, Ca2+ und Mg2+. Die stark emittierende Fluoreszenz des Sensors mit einer langen Lebensdauer von 165 ns wird durch eine 1:1-Komplexbildung bei Zugabe von Metallionen in Acetonitril gel{\"o}scht. Bei Zugabe eines zehnfachen {\"U}berschusses des Metallions zum Sensor bilden sich Agglomerate mit einem Durchmesser von etwa 3 nm. Aufgrund der komplexen Wechselwirkungen im System werden konventionelle lineare Korrelationen nicht f{\"u}r alle Konzentrationen beobachtet. Daher wird ein kritischer Vergleich zwischen der konventionellen Job-Plot-Interpretation, der Methode von Benesi-Hildebrand und einem nicht-linearen Fit vorgestellt. Das vorgestellte System erm{\"o}glicht die spezifische und robuste Erfassung von medizinisch und {\"o}kologisch relevanten Ionen im gesundheitsrelevanten nM-Bereich und k{\"o}nnte z. B. zur {\"U}berwachung der entsprechenden Ionen in Abfallstr{\"o}men eingesetzt werden. Doch h{\"a}ufig landen diese Abfallstr{\"o}me in empfindlichen Aquakulturen, wo eine solche Sensortechnik nur funktioniert, wenn die Sonde wasserl{\"o}slich ist, um die Ausbreitung und Bildung von Umweltsch{\"a}den durch Schwermetalle zu {\"u}berwachen. Viele Chemosensoren arbeiten nur in bestimmten L{\"o}sungsmitteln und unter hochreinen Bedingungen quantitativ. In dieser Arbeit wird eine Methode zur Stabilisierung von wasserunl{\"o}slichen Chemosensoren auf Nanodiamanten in salzhaltigem Wasser unter Beibehaltung der Sensoreffektivit{\"a}t und -spezifit{\"a}t sowie der kolloidalen Stabilit{\"a}t vorgestellt. Zus{\"a}tzlich wird die Sensorf{\"a}higkeit in organischen L{\"o}sungsmitteln beibehalten. Diese Studie gibt Einblick in die Absorptionsf{\"a}higkeit von Pyren-Derivaten an der Nanodiamant-Oberfl{\"a}che und einen Weg, diese reversibel zu desorbieren. Außerdem beweist das System, dass in Anwesenheit von 95 \% Sauerstoffatmosph{\"a}re bei der Fluoreszenzmessung die Ergebnisse nicht von denen in Argonatmosph{\"a}re abweichen. Dar{\"u}ber hinaus st{\"o}rt das Vorhandensein g{\"a}ngiger Ionen im Wasser die kolloidale Stabilit{\"a}t der NDs nicht und hat auch keinen Einfluss auf die Sensorfunktionalit{\"a}t und ist somit ein vielversprechender Kandidat f{\"u}r Messungen ohne aufw{\"a}ndige Pr{\"a}parationsschritte.}, language = {en} } @phdthesis{KimbadiLombe2021, author = {Kimbadi Lombe, Blaise}, title = {Novel-Type Dimeric Naphthylisoquinoline Alkaloids from Congolese Ancistrocladus Lianas: Isolation, Structural Elucidation, and Antiprotozoal and Anti-Tumoral Activities}, doi = {10.25972/OPUS-19178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Herein described is the discovery of three novel types of dimeric naphthylisoquinoline alkaloids, named mbandakamines, cyclombandakamines, and spirombandakamines. They were found in the leaves of a botanically as yet unidentified, potentially new Ancistrocladus species, collected in the rainforest of the Democratic Republic of the Congo (DRC). Mbandakamines showed an exceptional 6′,1′′-coupling, in the peri-position neighboring one of the outer axes, leading to an extremely high steric hindrance at the central axis, and to U-turn-like molecular shape, which - different from all other dimeric NIQs, whose basic structures are all quite linear - brings three of the four bicyclic ring systems in close proximity to each other. This created an unprecedented follow-up chemistry, involving ring closure reactions, leading to two further, structurally even more intriguing subclasses, the cyclo- and the spirombandakamines, displaying eight stereogenic elements (the highest total number ever found in naphthylisoquinoline alkaloids). The metabolites exhibited pronounced antiplasmodial and antitrypanosomal activities. Likewise reported in this doctoral thesis are the isolation and structural elucidation of naphthylisoquinoline alkaloids from two further potentially new Ancistrocladus species from DRC. Some of these metabolites have shown pronounced antiausterity activities against human pancreatic cancer PANC-1 cells.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{MezaChincha2021, author = {Meza Chincha, Ana Lucia}, title = {Catalytic Water Oxidation with Functionalized Ruthenium Macrocycles}, doi = {10.25972/OPUS-20962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209620}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In light of the rapidly increasing global demand of energy and the negative effects of climate change, innovative solutions that allow an efficient transition to a carbon-neutral economy are urgently needed. In this context, artificial photosynthesis is emerging as a promising technology to enable the storage of the fluctuating energy of sunlight in chemical bonds of transportable "solar fuels". Thus, in recent years much efforts have been devoted to the development of robust water oxidation catalysts (WOCs) leading to the discovery of the highly reactive Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylic acid) catalyst family. The aim of this thesis was the study of chemical and photocatalytic water oxidation with functionalized Ruthenium macrocycles to explore the impact of substituents on molecular properties and catalytic activities of trinuclear macrocyclic Ru(bda) catalysts. A further objective of this thesis comprises the elucidation of factors that influence the light-driven water oxidation process with this novel class of supramolecular WOCs.}, subject = {Rutheniumkomplexe}, language = {en} } @phdthesis{PeethambaranNairSyamala2021, author = {Peethambaran Nair Syamala, Pradeep}, title = {Bolaamphiphilic Rylene Bisimides: Thermodynamics of Self-assembly and Stimuli-responsive Properties in Water}, doi = {10.25972/OPUS-21342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The present thesis demonstrates how different thermodynamic aspects of self-assembly and stimuli-responsive properties in water can be encoded on the structure of π-amphiphiles, consisting of perylene or naphthalene bisimide cores. Initially, quantitative thermodynamic insights into the entropically-driven self-assembly was studied for a series of naphthalene bisimides with UV/Vis and ITC measurements, which demonstrated that their thermodynamic profile of aggregation is heavily influenced by the OEG side chains. Subsequently, a control over the bifurcated thermal response of entropically driven and commonly observed enthalpically driven self-assembly was achieved by the modulation of glycol chain orientation. Finally, Lower Critical Solution Temperature (LCST) phenomenon observed for these dyes was investigated as a precise control of this behavior is quintessential for self-assembly studies as well as to generate 'smart' materials. It could be shown that the onset of phase separation for these molecules can be encoded in their imide substituents, and they are primarily determined by the supramolecular packing, rather than the hydrophobicity of individual monomers.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Wehner2021, author = {Wehner, Marius}, title = {Supramolecular Polymorphism in Homo- and Heterochiral Supramolecular Polymerizations}, doi = {10.25972/OPUS-21151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211519}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of the first part of this thesis was to investigate (R,R)-PBI as a model system for polymorphism at its origin by a supramolecular approach. The pathway complexity of (R,R)-PBI was fine-tuned by experimental parameters such as solvent, temperature and concentration to make several supramolecular polymorphs accessible. Mechanistic and quantum chemical studies on the kinetics and thermodynamics of the supramolecular polymerization of (R,R)-PBI were conducted to shed light on the initial stages of polymorphism. The second part of this work deals with mechanistic investigations on the supramolecular polymerization of the racemic mixture of (R,R)- and (S,S)-PBI with regard to homochiral and heterochiral aggregation leading to conglomerates and a racemic supramolecular polymer, respectively.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Hecht2021, author = {Hecht, Markus}, title = {Liquid-Crystalline Perylene Bisimide and Diketopyrrolopyrrole Assemblies}, doi = {10.25972/OPUS-21698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The research presented in this thesis illustrates that self-assembly of organic molecules guided by intermolecular forces is a versatile bottom-up approach towards functional materials. Through the specific design of the monomers, supramolecular architectures with distinct spatial arrangement of the individual building blocks can be realized. Particularly intriguing materials can be achieved when applying the supramolecular approach to molecules forming liquid-crystalline phases as these arrange in ordered, yet mobile structures. Therefore, they exhibit anisotropic properties on a macroscopic level. It is pivotal to precisely control the interchromophoric arrangement as functions originate in the complex structures that are formed upon self-assembly. Consequently, the aim of this thesis was the synthesis and characterization of liquid-crystalline phases with defined supramolecular arrangements as well as the investigation of the structure-property relationship. For this purpose, perylene bisimide and diketopyrrolopyrrole chromophores were used as they constitute ideal building blocks towards functional supramolecular materials due to their thermal stability, lightfastness, as well as excellent optical and electronic features desirable for the application in, e.g., organic electronics.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Shen2021, author = {Shen, Chia-An}, title = {Dicyanomethylene Squaraines: Aggregation and G-Quadruplex Complexation}, doi = {10.25972/OPUS-24359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Squaraine dyes have attracted more attention in the past decade due to their strong and narrow absorption and fluorescence along with the easily functionalized molecular structure. One successful approach of core functionalization is to replace one oxygen of the squaric carbonyl group with a dicyanomethylene group, which shifts the absorption and emission into the near infrared (NIR) region and at the same time leads to a rigid, planar structure with C2v symmetry. However, such squaraines tend to aggregate cofacially in solution due to dispersion forces and dipole-dipole interactions, usually leading to H-type exciton coupling with undesired blue-shifted spectrum and quenched fluorescence. Therefore, the goal of my research was the design of dicyanomethylene-substituted squaraine dyes that self-assemble into extended aggregates in solution with J-type coupling, in order to retain or even enhance their outstanding optical properties. Toward this goal, bis(squaraine) dyes were envisioned with two squaraine units covalently linked to trigger a slip-stacked packing motif within the aggregates to enable J-type coupling. In my first project, bis(squaraine) dye BisSQ1 was synthesized, in which two dicyanomethylene squaraine chromophores are covalently linked. Concentration and temperature-dependent UV/Vis/NIR spectroscopy experiments reveal that BisSQ1 undergoes cooperative self-assembly resulting in J-type aggregates in a solvent mixture of toluene/1,1,2,2-tetrachloroethane (TCE) (98:2, v/v). The J type exciton coupling is evident from the significantly red shifted absorption maximum at 886 nm and the fluorescence peak at 904 nm. In conclusion, this was a first example to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by simply connecting two dyes in a head-to-tail bis chromophore structure. Connecting two squaraine dyes with an additional phenylene spacer (BisSQ2) leads to two different polymorphs with very distinct absorption spectra upon cooling down a solution of BisSQ2 in a solvent mixture of toluene/TCE (98:2, v/v) with different rates. Accordingly, rapid cooling resulted in rigid helical nanorods with an absorption spectrum showing a panchromatic feature, while slow cooling led to a sheet-like structure with a significant bathochromic shift in the absorption spectrum. It was discovered that the conventional molecular exciton model failed to explain the panchromatic absorption features of the nanorods for the given packing arrangement, therefore more profound theoretical investigations based on the Essential States Model (ESM) were applied to unveil the importance of intermolecular charge transfer (ICT) to adequately describe the panchromatic absorption spectrum. Moreover, the red-shift observed in the spectrum for the sheet-like structure can be assigned to the interplay of Coulomb coupling and ICT-mediated coupling. Furthermore, the same bis-chromophore strategy was adopted for constructing an NIR-II emitter with a bathochromically-shifted spectrum. In chloroform, BisSQ3 exhibits an absorption maximum at 961 nm with a significant bathochromic shift (1020 cm-1) compared to the reference mono-squaraine SQ, indicating intramolecular J-type coupling via head-to-tail arrangement of two squaraine dyes. Moreover, BisSQ3 shows a fluorescence peak at 971 nm with a decent quantum yield of 0.33\%. In less polar toluene, BisSQ3 self-assembles into nanofibers with additional intermolecular J-type coupling, causing a pronounced bathochromic shift with absorption maximum at 1095 nm and a fluorescence peak at 1116 nm. Thus, connecting two quinoline-based squaraines in a head-to-tail fashion leads to not only intra-, but also intermolecular J-type exciton coupling, which serves as a promising strategy to shift the absorption and emission of organic fluorophores into the NIR-II window while retaining decent quantum yields. In conclusion, my research illustrates based on squaraine dyes how a simple modification of the molecular structure can significantly affect the aggregation behavior and further alter the optical properties of dye aggregates. Elongated supramolecular structures based on dicyanomethylene substituted squaraine dyes were successfully established by covalently linking two squaraine units to form a bis-chromophore structure. Then, a simple but efficient general approach was established to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by directly connecting two squaraine dyes in a head-to-tail fashion without spacer units. Moreover, the additional spacer between the squaraine dyes in BisSQ2 allowed different molecular conformations, which leads to two different morphologies depending on the cooling rates for a hot solution. Hence, this is a promising strategy to realize supramolecular polymorphism. In general, it is expected that the concept of constructing J-aggregates by the bis-chromophore approach can be extended to entirely different classes of dyes since J-aggregates possess a variety of features such as spectral shifts into the NIR window, fluorescence enhancement, and light harvesting, which are commonly observed and utilized for numerous fundamental studies and applications. Moreover, the insights on short-range charge transfer coupling for squaraine dyes is considered of relevance for all materials based on alternating donor-acceptor π-systems. The panchromatic spectral feature is in particular crucial for acceptor-donor-acceptor (ADA) dyes, which are currently considered as very promising materials for the development of bulk heterojunction solar cells.}, subject = {Squaraine}, language = {en} } @phdthesis{Renner2021, author = {Renner, Rebecca}, title = {Aggregation, Chirality and Reduction of Nonplanar Polycyclic Aromatic Hydrocarbons}, doi = {10.25972/OPUS-24700}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Within this thesis the interactions between novel corannulene derivatives in solution as well as in the solid state by changing the imide residue of a literature known extended corannulene dicarboximide were investigated, in order to obtain a better understanding of the packing and possible charge transport in potential applications. Accordingly, the goal of the work was to synthesize and investigate an electron-poor corannulene bis(dicarboximide) based on previously published work but with higher solubility and less steric encumbrance in imide position to enable self-assembly in solution. To obtain further insights into the conformational stability, structure and chiroptical properties of heavily twisted PBIs another aim of this thesis was the design, synthesis, and optoelectronic investigation of various fourfold directly arylated PBIs by substitution in bay position with smaller hydrocarbons with different steric demand, i.e., benzene, naphthalene and pyrene, which should be separable by chiral high performance liquid chromatography (HPLC). As of yet, no concise study concerning the optical and electronic properties of differently core-substituted PBIs in the neutral as well as the mono- and dianionic state in solution is available, which also elucidates the origin of the different optical transitions observed in the absorption and emission spectra. Thus, in this thesis, the investigation of five PBI derivatives with different frontier energetic levels to produce a reference work of reduced PBIs was tackled.}, subject = {Corannulene}, language = {en} } @phdthesis{Rausch2021, author = {Rausch, Rodger}, title = {Chemistry of Chromophore Bridged Biradicals - Synthesis and Properties}, doi = {10.25972/OPUS-22650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226501}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Within this PhD thesis, chromophore-bridged biradicals were synthesised and their properties characterised. Therefore, it was necessary to develop novel synthetic procedures and implement several experimental characterisation methods. In summary, within this thesis the scope of pigment chromophore phenoxyl radical decoration was further explored and expanded to IIn as well as DPP colourants. HOMA analysis highlighted the importance of aromaticity in order to understand the spin crossover from heteroaromatic quinoidal to aromatic open shell DPPs. Finally, PBI, IIn and DPP biradicals were advanced towards stable materials by introduction of nitronyl nitroxide radical centres.}, subject = {Biradikal}, language = {en} } @phdthesis{Shamburger2021, author = {Shamburger, William}, title = {Total Synthesis of Mono- and Dimeric Naphthylisoquinoline Alkaloids and Related Analogs}, doi = {10.25972/OPUS-25061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250612}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Our research group focusses on the isolation, structural elucidation, and synthesis of bioactive natural products, among others, the naphthylisoquinoline alkaloids from tropical lianas. This intriguing class of compounds comprises representatives with activities against, e.g. P. falciparum, the cause of Malaria tropica, against the neglected disease leishmaniasis, and, as discovered more recently, against different types of cancer cells. Based on the high potency of theses extraordinary secondary metabolites, this thesis was devoted to the total synthesis of bioactive natural products and closely related analogs.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{Sapotta2021, author = {Sapotta, Meike}, title = {Perylene Bisimide Cyclophanes: Recognition of Alkaloids, Aggregation Behavior in Aqueous Environment and Guest-Mediated Chirality Transfer}, doi = {10.25972/OPUS-20002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Inspired by the fact that sufficient solubility in aqueous media can be achieved by functional substitution of perylene bisimides (PBIs) with polar groups, one of the essential aims of this thesis was the design and successful synthesis of the new water-soluble PBI cyclophanes [2PBI]-1m and [2PBI]-1p, which are appended with branched, hydrophilic oligoethylene glycol (OEG) chains. Subsequently, the focus was set on the elucidation of properties of PBI cyclophane hosts which are also of relevance for recognition processes in biological systems. The performance of the new amphiphilic PBI cyclophane [2PBI]-1p as synthetic receptors for various natural aromatic alkaloids in aqueous media was thoroughly investigated. Alkaloids represent a prominent class of ubiquitous nitrogen containing natural compounds with a great structural variety and diverse biological activity. As of yet, no chromophore host acting as a molecular probe for a range of alkaloids such as harmine or harmaline is known. In addition, the self-association behavior of cyclophane host [2PBI]-1m and its reference monomer in water was studied in order to gain insights into the thermodynamic driving forces affecting the self-assembly process of these two PBI systems in aqueous environment. Moreover, the chirality transfer upon guest binding previously observed for a PBI cyclophane was investigated further. The assignment of the underlying mechanism of guest recognition to either the induced fit or conformational selection model was of particular interest.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Michail2021, author = {Michail, Evripidis}, title = {Design and Development of a Two-Photon Absorption Induced Fluorescence Spectrometer and the Investigation of Nonlinear Optical Properties of Organic Chromophores}, doi = {10.25972/OPUS-24218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Main objectives of the present dissertation can be divided in two parts. The first part deals with setting up a spectroscopic technique for reliable and accurate measurements of the two-photon absorption (2PA) cross section spectra. In the second part, this firmly established experimental technique together with conventional spectroscopic characterization, quantum-chemical computations and theoretical modelling calculations was combined and therefore used as a tool to gain information for the so-called structure-property relationship through several molecular compounds.}, subject = {Nonlinear Optical Properties of Organic Materials}, language = {en} } @phdthesis{Siewert2021, author = {Siewert, Aaron}, title = {Nucleotide analogs as rigid spin labels for DNA and RNA}, doi = {10.25972/OPUS-24765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247657}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nucleic acids are one of the important classes of biomolecules together with carbohydrates, proteins and lipids. Both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are most well known for their respective roles in the storage and expression of genetic information. Over the course of the last decades, nucleic acids with a variety of other functions have been discovered in biological organisms or created artificially. Examples of these functional nucleic acids are riboswitches, aptamers and ribozymes. In order to gain information regarding their function, several analytical methods can be used. Electron paramagnetic resonance (EPR) spectroscopy is one of several techniques which can be used to study nucleic acid structure and dynamics. However, EPR spectroscopy requires unpaired electrons and because nucleic acids themselves are not paramagnetic, the incorporation of spin labels which carry a radical is necessary. Here, three new spin labels for the analysis of nucleic acids by EPR spectroscopy are presented. All of them share two important design features. First, the paramagnetic center is located at a nitroxide, flanked by ethyl groups to prevent nitroxide degradation, for example during solid phase synthesis. Furthermore, they were designed with rigidity as an important quality, in order to be useful for applications like pulsed electron double resonance (PELDOR) spectroscopy, where independent motion of the spin labels relative to the macromolecule has a noticeable negative effect on the precision of the measurements. Benzi-spin is a spin label which differs from most previous examples of rigid spin labels in that rather than being based on a canonical nucleoside, with a specific base pairing partner, it is supposed to be a universal nucleoside which is sufficiently rigid for EPR measurements when placed opposite to a number of different nucleosides. Benzi-spin was successfully incorporated into a 20 nt oligonucleotide and its base pairing behavior with seven different nucleosides was examined by UV/VIS thermal denaturation and continuous wave (CW) EPR experiments. The results show only minor differences between the different nucleosides, thus confirming the ability of benzi-spin to act as a universally applicable spin label. Lumi-spin is derived from lumichrome. It features a rigid scaffold, as well as a free 2'-hydroxy group, which should make it well suited for PELDOR experiments once it is incorporated into RNA oligonucleotides. E{\c{C}}r is based on the {\c{C}} family of spin labels, which contains the most well known rigid spin labels for nucleic acids to this day. It is essentially a version of E{\c{C}}m with a free 2'-hydroxy group. It was converted to triphosphate E{\c{C}}rTP and used for primer extension experiments to test the viability of enzymatic incorporation of rigid spin labels into oligonucleotides as an alternative to solid-phase synthesis. Incorporation into DNA by Therminator III DNA polymerase in both single-nucleotide and full-length primer extensions was achieved. All three of these spin labels represent further additions to the expanding toolbox of EPR spectroscopy on nucleic acids and might prove valuable for future research.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Roos2021, author = {Roos, Markus}, title = {Synthesis, Photophysics and Photocatalysis of [FeFe] Complex Containing Dyads and Bimolecular Systems}, doi = {10.25972/OPUS-23453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In the course of this work, a total of three photocatalytically active dyads for proton reduction could be synthesized together with the associated individual components. Two of them, D1 and D2, comprised a [Ru(bpy)3]2+ photosensitizer and D3 an [Ir(ppy)2bpy]+ photosensitizer. A Ppyr3-substituted propyldithiolate [FeFe] complex was used as catalyst in all systems. The absorption spectroscopic and electrochemical investigations showed that an inner-dyadic electronic coupling is effectively prevented in the dyads due to conjugation blockers within the bridging units used. The photocatalytic investigations exhibited that all dyad containing two-component systems (2CS) showed a significantly worse performance than the corresponding bimolecular three-component systems (3CS). Transient absorption spectroscopy showed that the 2CS behave very similarly to the associated multicomponent systems during photocatalysis. The electron that was intended for the intramolecular transfer from the photosensitizer unit to the catalyst unit within the dyads remains at the photosensitizer for a relatively long time, analogous to the 3CS and despite the covalently bound catalyst. It is therefore assumed that this intramolecular electron transfer is likely to be hindered as a result of the weak electronic coupling caused by the bridge units used. Instead, the system bypasses this through an intermolecular transfer to other dyad molecules in the immediate vicinity. In addition, with the help of emission quenching experiments and electrochemical investigations, it could be clearly concluded that all investigated systems proceed via the reductive quenching mechanism during photocatalysis.}, subject = {Fotokatalyse}, language = {en} } @phdthesis{Kraus2020, author = {Kraus, Michael}, title = {The Conversion of Bifidobacterium adolescentis Sucrose Phosphorylase into a Polyphenol Transglucosidase via Structure-based Enzyme Engineering}, doi = {10.25972/OPUS-19247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The initial goal was the conversion of Bifidobacterium adolescentis Sucrose Phosphorylase (BaSP) into a polyphenol glucosidase by structure based enzyme engineering. BaSP was chosen because of its ability to utilize sucrose, an economically viable and sustainable donor substrate, and transfer the glucosyl moiety to various acceptor substrates. The introduction of aromatic residues into the active site was considered a viable way to render it more suitable for aromatic acceptor compounds by reducing its polarity and potentially introducing π-π-interactions with the polyphenols. An investigation of the active site revealed Gln345 as a suitable mutagenesis target. As a proof of concept BaSP Q345F was employed in the glycosylation of (+)-catechin, (-)-epicatechin and resveratrol. The variant was selective for the aromatic acceptor substrates and the glucose disaccharide side reaction was only observed after almost quantitative conversion of the aromatic substrates. A crystal structure of BaSP Q345F in complex with glucose was obtained and it displayed an unexpected shift of an entire domain by 3.3 {\AA}. A crystal structure of BaSP D192N-Q345F, an inactive variant in complex with resveratrol-3-α-D-glucosid, the glucosylation product of resveratrol, synthesized by BaSP Q345F was solved. It proved that the domain shift is in fact responsible for the ability of the variant to glycosylate aromatic compounds. Simultaneously a ligand free crystal structure of BaSP Q345F disproved an induced fit effect as the cause of the domain shift. The missing link, a crystal structure of BaSP Q345F in the F-conformation is obtained. This does not feature the domain shift, but is in outstanding agreement with the wildtype structure. The domain shift is therefore not static but rather a step in a dynamic process. It is further conceivable that the domain shifted conformation of BaSP Q345F resembles the open conformation of the wild type and that an adjustment of a conformational equilibrium as a result of the Q345F point mutation is observed. An investigation into the background reaction, the formation of glucose-glucose disaccharides of BaSP Q345F and three further variants that addressed the same region (L341C, D316C-L341C and D316C-N340C) revealed the formation of nigerose by BaSP Q345F.}, subject = {Phosphorylase}, language = {en} } @phdthesis{LiebschergebBloehbaum2020, author = {Liebscher [geb. Bl{\"o}hbaum], Julia}, title = {Side chain functional poly(2-oxazoline)s for biomedical applications}, doi = {10.25972/OPUS-20396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The aim of the thesis was to develop water soluble poly(2-oxazoline) (POx) copolymers with new side group functionalities, which can be used for the formation of hydrogels in biomedical applications and for the development of peptide-polymer conjugates. First, random copolymers of the monomer MeOx or EtOx with ButEnOx and EtOx with DecEnOx were synthesized and characterized. The vinyl functionality brought into the copolymer by the monomers ButEnOx and DecEnOx would later serve for post-polymerization functionalization. The synthesized copolymers were further functionalized with thiols via post-polymerization functionalization using a newly developed synthesis protocol or with a protected catechol molecule for hydrogel formation. For the formation of peptide-polymer conjugates, a cyclic thioester, namely thiolactone acrylamide and an azlactone precursor, whose synthesis was newly developed, were attached to the side chain of P(EtOx-co-ButEnOx) copolymers. The application of the functionalized thiol copolymers as hydrogels using thiol-ene chemistry for cross-linking was demonstrated. The swelling behavior and mechanical properties were characterized. The hydrophilicity of the network as well as the cross-linking density strongly influenced the swelling behavior and the mechanical strength of the hydrogels. All hydrogels showed good cell viability results. The hydrogel networks based on MeOx and EtOx were loaded with two dyes, fluorescein and methylene blue. It was observed that the uptake of the more hydrophilic dye fluorescein depended more on the ability of the hydrogel to swell. In contrast, the uptake of the more hydrophobic dye methylene blue was less dependent on the swelling degree, but much more on the hydrophilicity of the network. For the potential application as cartilage glue, (biohybrid) hydrogels were synthesized based on the catechol-functionalized copolymers, with and without additional fibrinogen, using sodium periodate as the oxidizing agent. The system allowed for degradation due to the incorporated ester linkages at the cross-linking points. The swelling behavior as well as the mechanical properties were characterized. As expected, hydrogels with higher degrees of cross-linking showed less swelling and higher elastic modulus. The addition of fibrinogen however increased the elasticity of the network, which can be favorable for the intended application as a cartilage glue. Biological evaluation clearly demonstrated the advantage of degradable ester links in the hydrogel network, where chondrocytes were able to bridge the artificial gap in contrast to hydrogels without any ester motifs. Lastly, different ways to form peptide-polymer conjugates were presented. Peptides were attached with the thiol of the terminal cysteine group to the vinyl side chain of P(EtOx-co-ButEnOx) copolymers by radical thiol-ene chemistry. Another approach was to use a cyclic thioester, thiolactone, or an azlactone functionality to bind a model peptide via native chemical ligation. The two latter named strategies to bind peptides to POx side chains are especially interesting as one and in the case of thiolactone two free thiols are still present at the binding site after the reaction, which can, for example, be used for further thiol-ene cross-linking to form POx hydrogels. In summary, side functional poly(oxazoline) copolymers show great potential for numerous biomedical applications. The various side chain functionalities can be introduced by an appropriate monomer or by post-polymerization functionalization, as demonstrated. By their multi-functionality, hydrogel characteristics, such as cross-linking degree and mechanical strength, can be fine-tuned and adjusted depending on the application in the human body. In addition, the presented chemoselective and orthogonal reaction strategies can be used in the future to synthesize polymer conjugates, which can, for example, be used in drug delivery or in tissue regeneration.}, subject = {Polymere}, language = {en} } @phdthesis{Kiendl2020, author = {Kiendl, Benjamin}, title = {Application of diamond nanomaterials in catalysis}, doi = {10.25972/OPUS-17941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work the catalytic activity of nanodiamond particles with different dopants and surface terminations and of diamond nanomaterials funtionalized with ruthenium-based photocatalysts was investigated, illustrating materials application in photoredox chemistry and the photo(electro)catalytic reduction of CO2. Regarding the application of diamond nanomaterials in photocatalysis, methods to fabricate and characterize several (un)doped nanoparticles with different surface termination were successfully developed. Various photocatalysts, attached to nanodiamond particles via linker systems, were tested in photoredox catalysis and the photo(electro)catalytic reduction of CO2.}, subject = {Fotokatalyse}, language = {en} } @phdthesis{Steinmetzger2020, author = {Steinmetzger, Christian}, title = {Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function}, doi = {10.25972/OPUS-20760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the "vegetable" nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow-red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili-HBI complexes, a novel base-ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices.}, subject = {Aptamer}, language = {en} } @phdthesis{Buschmann2019, author = {Buschmann, Rachel Abigail}, title = {Synthesis of annulated pi-systems based on a tribenzotriquinacene core}, doi = {10.25972/OPUS-19349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of this work was the selective functionalisation of tribenzotriquinacene (TBTQ) in order to extend the aromatic system and tune the electronic properties. The synthesised molecules could be starting materials for a model system of a defective graphene fragment. The "triple cyclisation pathway" by Hopf et al. was adapted and fluorinated tribenzotriquinacenes were synthesised for the first time. Phenanthrene groups were also introduced in other model systems and the crystal structures of phenanthrene functionalised TBTQs were compared with the parent molecules. In addition, the arrangement of TBTQ and centro methyl functionalised TBTQ was investigated on a Ag(111) surface for the first time using scanning transmission microscopy (STM). Different arrangements were observed, depending on the coverage of the surface. The insights gained about the interaction between TBTQs as well as their synthesis provide a foundation for further work and potential applications as components in organic electronic devices.}, subject = {Triquinacenderivate}, language = {en} } @phdthesis{Wagner2019, author = {Wagner, Wolfgang}, title = {Supramolecular Block Copolymers by Seeded Living Supramolecular Polymerization of Perylene Bisimides}, doi = {10.25972/OPUS-19300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The research on supramolecular polymerization has undergone a rapid development in the last two decades, particularly since supramolecular polymers exhibit a broad variety of functionalities and applications in organic electronics, biological science or as functional materials (Chapter 2.1). Although former studies have focused on investigation of the thermodynamics of supramolecular polymerization (Chapter 2.2), the academic interest in the recent years shifted towards gaining insight into kinetically controlled self-assembly and pathway complexity to generate novel out-of-equilibrium architectures with interesting nanostructures and features (Chapter 2.3). Along this path, the concepts of seeded and living supramolecular polymerization were recently developed to enable the formation of supramolecular polymers with controlled length and low polydispersity under precise kinetic control (Chapter 2.4). Besides that, novel strategies were developed to achieve supramolecular copolymerization resulting in complex multicomponent nanostructures with different structural motives. The classification of these supramolecular copolymers on the basis of literature examples and an overview of previously reported principles to create such supramolecular architectures are provided in Chapter 2.5. The aim of the thesis was the non-covalent synthesis of highly desirable supramolecular block copolymers by the approach of living seeded supramolecular polymerization and to study the impact of the molecular shape of the monomeric building blocks on the supramolecular copolymerization. Based on the structure of the previously investigated PBI organogelator H-PBI a series of novel PBIs, bearing identical hydrogen-bonding amide side-groups in imide-position and various kind or number of substituents in bay-position, was synthesized and analyzed within this thesis. The new PBIs were successfully obtained in three steps starting from the respective bromo-substituted perylene-3,4:9,10-tetracarboxylic acid tetrabutylesters or from the N,N'-dicyclohexyl-1,7-dibromoperylene-3,4:9,10-tetracarboxylic acid bisimide. All target compounds were obtained in the final step by imidization reactions of the respective perylene tetracarboxylic acid bisanhydride precursors with N-(2-aminoethyl)-3,4,5-tris(dodecyloxy)-benzamide and were fully characterized by 1H and 13C NMR spectroscopy as well as high resolution mass spectrometry. The variation of bay-substituents strongly changes the optical properties of the monomeric PBIs which were investigated by UV/vis and fluorescence spectroscopy. The increase of the number of the methoxy-substituents provokes, for example, a red-shift of the absorption maxima concomitant with a decrease of extinction coefficients and leads to a drastic increase of the fluorescence quantum yields. Furthermore, the molecular geometry of the PBIs is also affected by variations of the bay-substituents. Thus, increasing the steric demand of the bay-substituents leads to an enlargement of the twist angles of the PBI cores as revealed by DFT calculations. Especially the 1,7-dimethoxy bay-substituted MeO-PBI proved to be very well-suited for the studies envisioned within this thesis. The self-assembly of this PBI derivative was analyzed in detail by UV/vis, fluorescence and FT-IR spectroscopy as well as atomic force microscopy (Chapter 3). These studies revealed that MeO-PBI forms in a solvent mixture of methylcyclohexane and toluene (2:1, v/v) kinetically trapped off-pathway H-aggregated nanoparticles upon fast cooling of a monomeric solution from 90 to 20 °C. However, upon slow cooling of the monomer solution fluorescent J-type nanofibers are formed by π π interactions and intermolecular hydrogen-bonding. The kinetically metastable off-pathway H-aggregates can be transformed into the thermodynamically more favored J-type aggregates by addition of seeds, which are produced by ultrasonication of the polymeric nanofibers. Interestingly, the living character of this seed-induced supramolecular polymerization process was proven by a newly designed multicycle polymerization experimental protocol. This living polymerization experiment clearly proves, that the polymerization can only occur at the "active" ends of the polymeric seed and that almost no recombination or chain termination processes are present. Hence, the approach of living supramolecular polymerization enables the formation of supramolecular polymers with controlled length and narrow polydispersity. In Chapter 4 the copolymerization of MeO-PBI with the structurally similar 1,7-dichloro (Cl-PBI) and 1,7-dimethylthio (MeS-PBI) bay-substituted PBIs is studied in detail. Both PBIs form analogous to MeO-PBI kinetically trapped off-pathway aggregates, which can be converted into the thermodynamically stable supramolecular polymers by seed-induced living supramolecular polymerization under precise kinetic control. However, the stability of the kinetically trapped aggregates of Cl-PBI and MeS-PBI is distinctly reduced compared to that of MeO-PBI, because the π-π-interactions of the kinetically metastable aggregates are hampered through the increased twisting of the PBI-cores of the former PBIs. UV/vis studies revealed that the two-component seeded copolymerization of the kinetically trapped state of MeO-PBI with seeds of Cl-PBI leads to the formation of unprecedented supramolecular block copolymers with A-B-A pattern by a living supramolecular polymerization process at the termini of the seeds. Remarkably, the resulting A-B-A block pattern of the obtained copolymers was clearly confirmed by atomic force microscopy studies as the respective blocks formed by the individual monomeric units could be distinguished by the pitches of the helical nanofibers. Moreover, detailed UV/vis and AFM studies have shown that by inverted two-component seed-induced polymerization, e.g., upon addition of seeds of MeO-PBI to the kinetically trapped aggregates of Cl-PBI, triblock supramolecular copolymers with B-A-B pattern can be generated. The switching of the block pattern could only be achieved because of the perfectly matching conditions for the copolymerization process and the tailored molecular geometry of the individual building blocks of both PBIs. These studies have demonstrated for the first time, that the block pattern of a supramolecular copolymer can be modulated by the experimental protocol through the approach of living supramolecular polymerization. Furthermore, by UV/vis analysis of the living copolymerization of MeO-PBI and MeS-PBI similar results were obtained showing also the formation of both A-B-A and B-A-B type supramolecular block copolymers. Although for these two PBIs the individual blocks could not be identified by AFM because the helical nanofibers of both PBIs exhibit identical helical pitches, these studies revealed for the first time that the approach of seeded living polymerization is not limited to a special pair of monomeric building blocks. In the last part of the thesis (Chapter 5) a systematic study on the two-component living copolymerization of PBIs with various sterical demanding bay-substituents is provided. Thus, a series of PBIs containing identical hydrogen-bonding amide groups in imide position but variable number (1-MeO-PBI, MeO-PBI, 1,6,7-MeO-PBI, 1,6,7,12-MeO-PBI) or size (EtO-PBI, iPrO-PBI) of alkoxy bay-substituents was investigated. The molecular geometry of the monomeric building blocks has a strong impact on the thermodynamically and even more pronounced on the kinetically controlled aggregation in solvent mixtures of MCH and Tol. While the mono- and dialkoxy-substituted PBIs form kinetically metastable species, the self-assembly of the tri- and tetramethoxy-substituted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) is completely thermodynamically controlled. The two 1,7-alkoxy substituted PBIs (EtO-PBI, iPrO-PBI) form very similar to MeO-PBI kinetically off-pathway H-aggregates and thermodynamically more favored J-type aggregates. However, the stability of the kinetically metastable state is drastically lower and the conversion into the thermodynamically favored state much faster than for MeO-PBI. In contrast, the monomethoxy-substituted PBI derivative (1-MeO-PBI) forms a kinetically trapped species by intramolecular hydrogen-bonding of the monomers, which can be transformed into the thermodynamically favored nanofibers by seeded polymerization. Importantly, the two-component seeded copolymerization of the kinetically trapped MeO PBI with seeds of other PBIs of the present series was studied by UV/vis and AFM revealing that the formation of supramolecular block copolymers is only possible for appropriate combinations of PBI building blocks. Thus, the seeded polymerization of the trapped state of the moderately core-twisted MeO-PBI with the, according to DFT-calculations, structurally similar PBIs (EtO-PBI and iPrO-PBI) leads to the formation of A-B-A block copolymers, like in the seeded copolymerization of MeO-PBItrapped with seeds of Cl-PBI and MeS-PBI already described in Chapter 4. However, by addition of seeds of the almost planar PBIs (H-PBI and 1-MeO-PBI) or seeds of the strongly core-twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) to the kinetically trapped state of MeO-PBI no block copolymers can be obtained. The mismatching geometry of these molecular building blocks strongly hampers both the intermolecular hydrogen-bonding and the π-π-interactions between the two different PBIs and consequently prevents the copolymerization process. Furthermore, the studies of the two-component seeded copolymerization of the kinetically trapped species of 1-MeO-PBI with seeds of the other PBIs also corroborated that a precise shape complementarity is crucial to generate supramolecular block copolymers. Thus, by addition of seeds of H-PBI to the kinetically trapped monomers of 1-MeO-PBI supramolecular block copolymers were generated. Both PBIs exhibit an almost planar PBI core according to DFT-calculations leading to strong non-covalent interactions between these PBIs. This perfectly matching geometry of both PBIs also enables the inverted seeded copolymerization of the kinetically trapped monomers of H-PBI with 1-MeO-PBIseed concomitant with a switching of the block pattern of the supramolecular copolymer from A-B-A to B-A-B type. In contrast, the seeding with the moderately twisted (MeO-PBI, EtO-PBI and iPrO-PBI) and the strongly twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12 MeO-PBI) has no effect on the kinetically trapped state of 1-MeO-PBI, because the copolymerization of these PBIs is prevented by the mismatching geometry of the molecular building blocks. In conclusion, the supramolecular polymerization and two-component seeded copolymerization of a series of PBI monomers was investigated within this thesis. The studies revealed that the thermodynamically and kinetically controlled self-assembly can be strongly modified by subtle changes of the monomeric building blocks. Moreover, the results have shown that living supramolecular polymerization is an exceedingly powerful method to generate unprecedented supramolecular polymeric nanostructures with controlled block pattern and length distribution. The formation of supramolecular block copolymers can only be achieved under precise kinetic control of the polymerization process and is strongly governed by the shape complementarity already imparted in the individual components. Thus, these insightful studies might enable a more rational design of monomeric building blocks for the non-covalent synthesis of highly complex supramolecular architectures with interesting properties for possible future applications, e.g., as novel functional materials.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Kirchner2019, author = {Kirchner, Eva}, title = {Discrete Supramolecular Stacks by Self-Assembly and Folding of Bis(merocyanine) Dyes}, doi = {10.25972/OPUS-15941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present thesis describes the development of a strategy to create discrete finite-sized supramolecular stacks of merocyanine dyes. Thus, bichromophoric stacks of two identical or different chromophores could be realized by folding of bis(merocyanine) dyes and their optical properties were discussed in terms of exciton theory. Quantum chemical calculations revealed strong exciton coupling between the chromophores within the homo- and hetero-π-stacks and the increase of the J-band of the hetero-dimers with increasing energy difference between the excited states of the chromophores could be attributed not only to the different magnitudes of transition dipole moments of the chromophores but also to the increased localization of the excitation in the respective exciton state. Furthermore, careful selection of the length of the spacer unit that defines the interplanar distance between the tethered chromophores directed the self-assembly of the respective bis(merocyanines) into dimers, trimers and tetramers comprising large, structurally precise π-stacks of four, six or eight merocyanine chromophores. It could be demonstrated that the structure of such large supramolecular architectures can be adequately elucidated by commonly accessible analysis tools, in particular NMR techniques in combination with UV/vis measurements and mass spectrometry. Supported by TDDFT calculations, the absorption spectra of the herein investigated aggregates could be explained and a relationship between the absorption properties and the number of stacking chromophores could be established based on exciton theory.}, subject = {Merocyanine}, language = {en} } @phdthesis{Seaf2019, author = {Seaf, Shaimaa Fayez Ali Mohammed}, title = {Isolation, structural elucidation, and biological evaluation of Naphthylisoquinoline alkaloids from two African Ancistrocladus species}, doi = {10.25972/OPUS-19158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The indepth metabolic profiling of the crude extracts of two African Ancistrocladus species viz. A. likoko from Central Africa and A. abbreviatus from West Africa, resulted in a total of 87 alkaloids among them 54 new ones. All of the compounds were intensely elucidated by 1D and 2D NMR, HRESIMS, as well as chemical and chiroptical techniques. Among the newly discovered compounds are quinoid naphthylisoquinolines with an ortho-diketone in the naphthalene portion, nor-naphthylisoquinoline alkaloid lacking the always present methyl group at C-1, seco-(ring cleaved) naphthylisoquinolines, and a newly discovered class of natural products called the naphthylisoindolinones. Some of the compounds displayed strong antitumoral activities against human pancreatic cancer cells and leukemia cells in-vitro.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{MufusamaKoySita2019, author = {Mufusama Koy Sita, Jean-Pierre}, title = {Quality Assessment of Antimalarial Medicines Sold in the Democratic Republic of the Congo and Phytochemical Investigations on a Congolese Ancistrocladus Liana}, doi = {10.25972/OPUS-19238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192382}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Nowadays, the management of infectious diseases is especially threatened by the rapid emergence of drug resistance. It has been suggested that the medicine quality assurance combined with good medication adherence may help to reduce this impendence. Moreover, the search for new antimicrobial agents from medicinal plants is strongly encouraged for the exploration of alternatives to existing therapies. In this context, the present work focused on both the quality evaluation of commercialized antimalarial medicines from the Democratic Republic of the Congo and on the phytochemical investigations of a Congolese Ancistrocladus species.}, subject = {Antimalariamittel}, language = {en} } @phdthesis{Riese2019, author = {Riese, Stefan}, title = {Photophysics and Spin Chemistry of Donor-Acceptor substituted Dipyrrinato-Metal-Complexes}, doi = {10.25972/OPUS-18022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180228}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this thesis, the photophysics and spin chemistry of donor-photosensitizer-acceptor triads were investigated. While all investigated triads comprised a TAA as an electron donor and a NDI as an electron acceptor, the central photosensitizers (PS) were different chromophores based on the dipyrrin-motif. The purity and identity of all target compounds could be confirmed by NMR spectroscopy, mass spectrometry and elemental analysis. The first part of the work dealt with dipyrrinato-complexes of cyclometalated heavy transition metals. The successful synthesis of novel triads based on Ir(III), Pt(II) and Pd(II) was presented. The optical and electrochemical properties indicated charge separation (CS), which was confirmed by transient absorption (TA) spectroscopy. TA-spectroscopy also revealed that the process of CS is significantly slower and less efficient for the triads based on Pt(II) and Pd(II) than for the analogous Ir(III) triads. This is mostly due to a much more convoluted reaction pathway, comprising several intermediate states before the formation of the final charge separated state (CSS2). On the other hand, CSS2 exhibits long lifetimes which are dependent on the central metal ion. While the Ir(III) triads show lifetimes of about 0.5 µs in MeCN, the Pt(II) and Pd(II) analogues show lifetimes of 1.5 µs. The magnetic field effect on the charge recombination (CR) kinetics of CSS2 was investigated by magnetic field dependent ns-TA spectroscopy and could be rationalized based on a classical kinetic scheme comprising only one magnetic field dependent rate constant k±. The behavior of k± shows a clear separation of the coherent and incoherent spin interconversion mechanisms. While the coherent spin evolution is due to the isotropic hyperfine coupling with the magnetic nuclei of the radical centers, the incoherent spin relaxation is due to a rotational modulation of the anisotropic hyperfine coupling tensor and is strongly dependent on the viscosity of the solvent. This dependence could be used to measure the nanoviscosity of the oligomeric solvent pTHF, which was found to be distinctly different from its macroviscosity. The second part of the work dealt with bisdipyrrinato complexes and their bridged porphodimethenato (PDM) analogues. Initially, the suitability of the different chromophores for the use as PS in donor-acceptor substituted triads was tested by a systematic investigation of their steady state and transient properties. While the PDM-complex of Zn(II) and Pd(II) exhibited promising characteristics such as a high exited state lifetime and relatively intense emission, the purely organic parent PDM and the non-bridged bisdipyrrinato-Pd(II) complex were less suitable. The difference between the two Pd(II) complexes could be explained by a structural rearrangement of the non-bridged complex which results in a non-emissive metal centered triplet state with disphenoidal geometry. This rearrangement is prevented by the dimethylmethylene-bridges in the bridged analogue resulting in higher phosphorescence quantum yields and excited state lifetimes. With the exception of the Zn(II)PDM-complex, the synthesis of novel donor acceptor substituted triads could be realized for all desired central chromophores. They were investigated equivalently to the cyclometalated triads described in the first part. The steady state properties indicate a stronger electronic coupling between the subunits due to the lack of unsaturated bridges between the donor and the central chromophore. Photoinduced CS occurs in all investigated triads. Due to the low exited state lifetimes of the central chromophores, CSS is formed less efficiently for the triads based on the unbridged Pd(II)-complex as well as the purely organic PDM. In the triad based on the bridged Pd(II) complex, the CR of CSS2 is faster than its formation resulting in low intermediate concentrations. For its elongated analogue, this is not the case and CSS2 can be observed clearly. Although the spin-chemistry of the triads based on bisdipyrrinato-Pd(II) and porphodimethenato-Pd(II) is less well understood, first interpretations of the magnetic field dependent decay kinetics gave results approximately equivalent to those obtained for the cyclometalated triads. Furthermore, the MFE was shown to be useful for the investigation of the quantum yield of CS and the identity of the observed CSSs. In both parts of this work, the influence of the central photosensitizer on the photophysics and the spin chemistry of the triads could be shown. While the process of CS is directly dependent on the PS, the PS usually is not directly involved in the final CSSs. None the less, it can still indirectly affect the CR and spin chemistry of the CSS since it influences the electronic coupling between donor and acceptor, as well as the geometry of the triads.}, subject = {Charge-transfer-Komplexe}, language = {en} } @phdthesis{HechtgebWagener2019, author = {Hecht [geb. Wagener], Reinhard Johannes}, title = {Processing and Characterization of Bulk Heterojunction Solar Cells Based on New Organic n-Type Semiconductors}, doi = {10.25972/OPUS-16138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis established the fabrication of organic solar cells of DA dye donors and fullerene acceptors under ambient conditions in our laboratory, however, with reduced power conversion efficiencies compared to inert conditions. It was shown that moisture had the strongest impact on the stability and reproducibility of the solar cells. Therefore, utilization of robust materials, inverted device architectures and fast fabrication/characterization are recommended if processing takes place in air. Furthermore, the dyad concept was successfully explored in merocyanine dye-fullerene dyads and power conversion efficiencies of up to 1.14 \% and 1.59 \% were measured under ambient and inert conditions, respectively. It was determined that the major drawback in comparison to comparable BHJ devices was the inability of the dyad molecules to undergo phase separation. Finally, two series of small molecules were designed in order to obtain electron transport materials, using the acceptor-core-acceptor motive. By variation of the acceptor units especially the LUMO levels could be lowered effectively. Investigation of the compounds in organic thin film transistors helped to identify promising molecules with electron transport properties. Electron transport mobilities of up to 7.3 × 10-2 cm2 V-1 s-1 (ADA2b) and 1.39 × 10-2 cm2 V-1 s-1 (AπA1b) were measured in air for the ADA and AπA dyes, respectively. Investigation of selected molecules in organic solar cells proved that these molecules work as active layer components, even though power conversion efficiencies cannot compete with fullerene based devices yet. Thus, this thesis shows new possibilities that might help to develop and design small molecules as substitutes for fullerene acceptors.}, subject = {Heterosolarzelle}, language = {en} } @phdthesis{Kaufmann2019, author = {Kaufmann, Christina}, title = {Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding}, doi = {10.25972/OPUS-17300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 {\AA} lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 {\AA} result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 {\AA} larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 {\AA}) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based "null-aggregate" could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 {\AA} defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{HerbstgebHoehne2019, author = {Herbst [geb. H{\"o}hne], Stefanie}, title = {Liquid Crystalline Perylene Bisimide Assemblies}, doi = {10.25972/OPUS-16485}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Thus, the main focus of this thesis was to generate and investigate new one-dimensional LC PBI J-aggregates of an entirely new PBI organization with the transition dipole moments of the chromophores arranged parallel to the columnar axis and in slipped pi-pi stacking fashion to form highly fluorescent J-aggregates. Towards this goal, the tetra-bay substituted PBI 4c bearing free NH functional groups at the imide positions and four dendrons with branched ethylhexyl alkoxy chains at the meta-position of the phenoxy spacer (Figure 8.1a) was synthesized and compared to a literature known reference PBI 1. The mesogenic dendrons ensure LC character of the dye, which was confirmed by POM, DSC and extensive X-ray analysis. Furthermore, the sterically demanding bay-substituents prevent the cofacial assembly of the chromophores and force the dyes into a slipped pi-stacked order with the main transition dipole moments of the dyes oriented parallel to the columnar axis. X-ray analysis revealed that PBI 4c assembles into columnar triple-stranded helices consisting of side-to-side stacked molecules, which organize into a Colh phase (Figure 8.1b). FT-IR experiments of a thin film and aggregates in MCH solution confirmed the formation of H-bonds between the imide moieties. Temperature-dependent investigations furthermore proved a reversible formation of H-bonds and polarized FT-IR experiments finally gave evidence for the direction of the H-bonds along the shearing respective the columnar axis (Figure 8.1c). This was additionally verified by polarized UV-Vis absorption studies of aligned thin films. The changes in the UV-Vis absorption spectra of concentration- and temperature-dependent experiments in MCH are in agreement with the formation of J-aggregates and could be fitted to a nucleation-elongation growth mechanism. Remarkably, fluorescence spectroscopy studies revealed highly emissive aggregates in solution. These various spectroscopic techniques proved the utilization of directional noncovalent forces like hydrogen-bonding and pi-pi interactions in a cooperative manner forcing the PBI molecules in an unprecedented organization of a slipped pi-stacked arrangement with the orientation of the molecular axis and the respective transition dipole moments parallel to the columns of the LC phase. By the group of Dietrich the formation of exciton-polaritons in imprinted LC pillar microcavities as consequent use of the LC 4c was reported for the first time.In the second part of this thesis the hierarchical organization of LC PBIs into defined single-, double-, triple- and quadruple-stranded J-aggregates within crystalline and columnar LC phases, partially arranged in helical supramolecular structures in dependence of the molecular design was demonstrated. This was achieved via the preparation of a library of twelve molecules PBI 3-6(a-c) (Figure 8.2a) that was synthesized by varying the substitution position of the dendrons at the phenoxy-spacer from ortho to meta or para and by introducing an additional methyl group in ortho-position. Also the length and shape of the alkoxy chains was changed. Consequently, the impact of the sterical demand of the bay substituents concerning their phase properties, molecular arrangement and exciton coupling was investigated. POM, DSC and X-ray studies revealed the formation of only crystalline phase for the ortho-substituted PBIs 3a-c, whereas the other derivatives generated SC or LC phases. The main focus was the series with the n-C12-alkoxy chains. For the corresponding PBIs 4-6b columnar LC phases were confirmed. Retrostructural analysis by modelling and simulations gave indications for a single stranded organization for PBI 3b, a double-stranded helix for PBI 6b, a triple-stranded helical arrangement for PBI 5b and a quadruple-stranded helix for PBI 4b (Figure 8.2b-d). For all four derivatives the same molecular orientation within the columns as for PBI 4c was proven by polarized FT-IR and UV-Vis absorption studies in aligned thin films. The organization in helices of different number of strands in the Cr and LC phases of PBI 3b, 4b, 5b and 6b offered a unique possibility to elucidate the influence of particular packing arrangements on dye aggregate interactions with light. In particular, it can be investigated how exciton coupling of the dyes' transition dipole moments and fluorescence properties are affected. In this context, the spectroscopic properties were investigated in thin film, which revealed a strong bathochromic shift of the absorption maxima compared to the monomers in solution in dependence on the number of strands for PBIs 4-6b in contrast to PBI 3b (Figure 8.2e). The same tendency was observed for the respective aggregates in MCH solution. The spectral changes obtained during concentration- and temperature-dependent UV-Vis absorption studies verified the formation of J-aggregates in MCH solution and solid state. The respective aggregates are highly likely formed via a nucleation-elongation growth mechanism. Appliance of Kasha's exciton theory on the supramolecular aggregates revealed different contributions of H- and J-type coupling for the oligo-stranded helices. Under these considerations, it delivered an explanation for the absorption and fluorescence properties of the assemblies and declares the "best" J-aggregate for the double stranded arrangement of PBI 6b with purely negative couplings among neighbour molecules and a quantum yield above 74 \% of the aggregates in MCH solution. With this H-bonded PBI-based library approach of twelve derivatives it could be shown how molecular engineering of perylene bisimide dyes can be used to design defined, complex supramolecular assemblies with unprecedented packing patterns and concomitant intriguing spectroscopic properties. So far, the formation of defined liquid crystalline supramolecular structures of tetra-bay substituted PBIs by double H-bonding between free imide moieties and pi-pi interactions between the chromophores was demonstrated. The impact of the H-bonds on the molecular arrangement was investigated in the next part of this thesis. In this regard, PBIs 7 and 8 bearing a methyl or cyclohexyl group at the imide position (Figure 8.3a) were synthesized and compared to PBI 4c. The soft character of the solid state for PBIs 7 and 8 was confirmed by POM, DSC and X-ray analysis. The X-ray studies further revealed for both PBIs a change of the molecular assembly towards helical columnar structures of conventional pi-stacked chromophores (Figure 8.3b) when the directed H-bonds cannot contribute as noncovalent interactions to the assembly formation. Temperature-dependent UV-Vis absorption studies demonstrated the importance of H-bonding in MCH solution in the way that the formation of J-aggregates as for PBI 4c could not be observed for the imide substituted molecules. In the next step, the spectroscopic properties in thin film were investigated. For PBI 7 a J-type band and fluorescence spectra with an enlarged Stokes shift and increased fluorescence lifetime of 11.4 ns, compared to PBI 4c, was obtained, suggesting the generation of excimer type emission by considering the assumed conventional stacking of rotational displaced molecules from X-ray analysis. With polarized UV-Vis absorption experiments the orientation of the molecules perpendicular to the shearing direction and subsequently to the columnar axis was confirmed. These diverse investigations clearly demonstrated the imperative of H-bonds for stable, defined, LC J-aggregates with the transition dipole moments parallel to the columnar axis. With PBIs 7 and 8 it is impressively shown how small changes in the molecular structure influence the molecular arrangement dependent on the cooperation of non-covalent interactions like H-bonding and pi-pi stacking. In the last part of this thesis the generation of two-dimensional LC arrangements is presented. Since tetra-bay substituted PBIs lead always to twisted cores preventing lamellar arrangement, here 1,7-disubstitution and the simultaneous retention of the free imide positions was chosen to generate LC lamellar phases of PBIs 9a, 9b and 10 (Figure 8.4a). This molecular design was expected to form planar perylene cores that can strongly interact by pi-pi stacking and H-bonding. POM, DSC and X-ray investigations of the compounds suggest lamellar LC phases for PBIs 9a and 9b and a soft phase for PBI 10. In this regard, the goal of the formation of LC lamellar phase of PBIs could be attained. The change from dendrons with n-C12-alkoxy chains to large fork-like mesogens like in 9b clearly changed the phase properties. PBI 9b exhibits the lowest clearing point, high phase stability, least viscosity, easy shearability at room temperature and phase transitions between lamellar and Colh phases dependent on temperature. The formation of H-bonds parallel to the layers was demonstrated by polarized FT-IR experiments for all three PBIs. Concentration-dependent UV-Vis absorption studies revealed the formation of a J-type aggregate, which seems to exhibit an overall two-dimensional structure. With STM investigations the formation of lamellar structures from drop-casted 9a and 10 solutions in 1-phenyloctane on HOPG surface could be observed. Figure 8.4b illustrates a schematic possible arrangement of the molecules in the layers (here exemplarily demonstrated for PBI 9a), which has to be further confirmed by modelling and simulations. Unfortunately, fluorescence investigations of the thin films revealed non- or only slightly emissive LC states, which make them negligible for photonic applications. Nevertheless, the synthesized and analyzed compounds might be an inspiration for further investigations on the path to two-dimensional exciton transport for photonic devices.}, subject = {Fl{\"u}ssigkristall}, language = {en} } @phdthesis{Schaefer2018, author = {Sch{\"a}fer, Julian}, title = {Synthesis and Photophysical Investigation of Donor-Acceptor-Substituted meta- and para-Benzene Derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im ersten Teil dieser Arbeit wurde die erfolgreiche Synthese einer Serie von bisTriarylamin (bisTAA) Verbindungen vorgestellt. Zum einen wurde das Substitutionmuster an der Benzol Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pX bzw. mX), und zum anderen die energetische Lage der Br{\"u}ckeneinheit durch zwei elektronen-schiebende oder ziehende Substituenten X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Im Falle der meta-Serie wurden auch einige in 4,6-Position substituierte Verbinungen hergestellt (mX46). Die neutral Verbindungen wurden bez{\"u}glich ihrer elektrochemischen und photophysikalischen Eigenschaften untersucht. Durch Oxidation konnten die gemischt valenten (MV), kationischen bisTAA-Verbindungen erzeugt werden. Der thermisch induzierte Lochtransfer (HT) wurde durch temperatur-abh{\"a}ngige ESR-Spektroskopie untersucht. W{\"a}hrend die HT-Rate k und HT-Barriere ΔG in mX unbeeinflusst von den Substituenten X sind, steigen gleichzeitig k und ΔG in der pX-Serie mit zunehmenden Elektonenschub von X an. Diese zun{\"a}chst widerspr{\"u}chliche Beobachtung konnte durch einen ansteigenden Einfluss von L{\"o}sungsmitteleffekten und dadurch resultierend, einer zus{\"a}tzlichen effektiven Barriere erkl{\"a}rt werden. Der optisch induzierte Lochtransfer wurde mittels UV/Vis/NIR-Spektroskopie untersucht. Die pX-Serie zeigte eine Zuhname der elektronischen Kopplung V und dementsprechende eine Abnahme von ΔG, mit Anstieg des elektonenschiebenden Charakters von X. F{\"u}r mX war eine spektroskopische Bestimmung dieser Parameter nicht m{\"o}glich. Die mX46-Serie zeigte ein intermedi{\"a}res Verhalten, wobei MV-Verbindungen mit stark elektronenschiebenden X eine {\"a}hnliche hohe Kopplungen wie pX aufwiesen, was mit Hilfe von DFT-Rechnungen bez{\"u}glich der Molek{\"u}lorbitale erkl{\"a}rt werden konnte. Im zweiten Teil dieser Arbeit wurde die Synthese einer Serie von Verbindungen mit Triarylamin (TAA) als Donor und Naphthalindiimid (NDI) als Akzeptor vorgestellt. Auch hier wurde zum einen das Substitutionmuster an der Benzol-Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pXNDI bzw. mXNDI) variieiet und die energetische Lage der durch X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Außerdem wurde die in 4,6-Position substituierte Verbinungen mOMe46NDI hergestellt. Alle Verbindungen wurden bez{\"u}glich ihrer elektochemischen und photophysikalischen Eigenschaften untersucht. Die Elektronentransferprozesse der Ladungsseparierung (CS) und Ladungsrekombination (CR) dieser Verbindungen sollten mittels transienter Absorptionsspektroskopie (TA) in Toluol untersucht werden. F{\"u}r die Nitroverbindungen p-/mNO2NDI war dies nicht m{\"o}glich, da sich diese unter Bestrahung zersetzten. Die CR von pXNDI waren nicht im ns-Bereich detektierbar, weshalb sich auf die mXNDI-Serie (mit X = OMe-CN) konzentriert wurde. Die CS wurde mittels fs-TA untersucht. Nach optischer Anregung konnte die Bildung eines CS-Zustandes detektiert werden, dessen Bildungsgeschwindigkeit hin zu elektronen-ziehenden Substituenten X steigt. Die CR wurde mit ns-TA untersucht. Sie findet in der Marcus invertierten Region statt und zeichnet sich wird durch ein biexponentialles Abklingverhaten, was durch ein Singulet-Triplett Gleichgewicht im CS-Zustand zustande kommt, aus. Durch Anlegen eines externen Magnetfeldes ließ sich das Abklingverhalten entscheidend ver{\"a}ndern und es konnte eine Singulett-Triplett Aufspaltung nachgewiesen werden. Dieser Befund konnte weiterhin durch Simulation der Abklingkurven best{\"a}tigt werden. In beiden Teilen dieser Arbeit konnte ein entscheidender Einfluss der Benzolbr{\"u}cke auf die auftretenden Ladungstransferprozesse gezeigt werden. F{\"u}r den HT in Grundzustand der MV bisTAA Verbindungen, sowie der ET im angeregten Zustand der Donor-Akzeptor-Verbindungen, wurden die h{\"o}chsten ET-Raten f{\"u}r die para-Serien pX und pXNDI gefunden, w{\"a}hrend die meta-Serien mX und mXNDI deutlch kleine Transferraten aufwiesen. In beiden Studien zeigten die meta46-Verbindungen mX46 und mOMeNDI46 ein intermedi{\"a}res Verhalten, zwischen denen der para- und meta-Verbindungen.}, subject = {Synthese}, language = {en} } @phdthesis{Auerhammer2018, author = {Auerhammer, Nina A.}, title = {Energy Transfer and Excitonic Interactions in Conjugated Chromophore Arrangements of Bodipys and Pyrenes and Squaraines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166721}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other. The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred. In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification. The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads. The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations. In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule.}, subject = {Chromophor}, language = {en} } @phdthesis{Huegel2018, author = {H{\"u}gel, Markus}, title = {The control of nanomorphology in star-shaped mesogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Stilbene-based star-shaped mesogens have been synthesized with and without fullerene guests. Thermotropic properties and the mechanism of space-filling in the mesophases of these systems have been examined.}, subject = {Fl{\"u}ssigkristall}, language = {en} } @phdthesis{Schreck2018, author = {Schreck, Maximilian}, title = {Synthesis and Photophysics of Linear and Star-Shaped Oligomers of Squaraine Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174272}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this thesis, the synthesis and photophysics of a great variety of squaraine dyes are presented. This variety is based on four parent squaraines containing either indolenine or quinoline heterocycles. By a suitable choice of the donor and acceptor unit, the optical properties can already be adapted to the properties desired on the stage of the monomer. To promote a further derivatisation of these dyes, diverse functional groups are attached to the monomers using transition metal-catalysed C-C coupling reactions. However, this has to be preceded by the synthesis of bromine-functionalised derivatives as a direct halogenation of squaraine dyes is not feasible. Therefore, the halogen function is already introduced in precursor molecules giving rise to a molecular building block system containing bromine-, boronic ester-, and alkyne-functionalised monomer units, which pave the way to a plethora of squaraine oligomers and polymers. The indolenine homopolymer pSQB-1 as well as the corresponding small molecular weight oligomers dSQB-1 and tSQB were synthesized applying Ni-mediated Yamamoto and Pd-catalysed Suzuki coupling methodologies, respectively. The motivation for this project relied on the fundamental investigations by V{\"o}lker et al. on pSQB-V. A progressive red-shift of the lowest energy absorption maximum from the dimer to the polymer was observed in CHCl3 compared to the monomer. With increasing number of monomer units, the exciton coupling decreases from the dimer to the polymer. In addition, the shape of the absorption band manifold shows a strong dependence on the solvent, which was also observed by V{\"o}lker et al. J-type aggregate behavior is found in chlorinated solvents such as CHCl3 and DCM, whereas H-type aggregates are formed in acetone. Temperature-dependent absorption studies in PhCN reveals a reversible equilibrium of diverse polymer conformers, which manifests itself in a gradual change from H-aggregate behavior to a mixture with a more pronounced J-aggregate behavior upon raising the temperature. It isassumed that both characteristic aggregate bands correlate in borderline cases with two polymer structures which can be assigned to a zig-zag and a helical structure. As no experimental evidence for these structures could hitherto be provided by NMR, TD-DFT computations on oligomers (22-mers) can reproduce very closely the characteristic features of the spectra for the two conformational isomers. The subsequent chapters are motivated by the goal to influence the optical properties through a control of the superstructure and thus of the intramolecular aggregate formation. On the one hand, bulky groups are implemented in the 3-position of the indolenine scaffold to provoke steric repulsion and thus favoring J-aggregate behavior at the expense of helical arrangements. The resulting homopolymer pDiPhSQB bearing two phenyl groups per indolenine exhibits J-type aggregate behavior with red-shifted absorption maxima in all considered solvents which is explained to be caused by the formation of elongated zig-zag structures. Furthermore, single-crystal X-ray analysis of monomer DiPhSQB-2-Br2 reveals a torsion of the indolenine moieties as a consequence of steric congestion. The twist of the molecular geometry and the resulting loss of planarity leads to a serious deterioration of the fluorescence properties, however a significant bathochromic shift of ca. 1 200 cm-1 of the lowest absorption band was observed compared to parent SQB, which is even larger than the shift for dSQB-1 (ca. 1 000 cm-1). On the other hand, a partial stiffening of the polymer backbone is attempted to create a bias for elongated polymer chains. In this respect, the synthetic approach is to replace every second biarylaxis with the rigid transoid benzodipyrrolenine unit. Despite a rather low average degree of polymerization < 10, exclusively red-shifted absorption maxima are observed in all solvents used. In order to complete the picture of intramolecular aggregates through the selective design of H-aggregates, a squaraine-squaraine copolymer was synthesised containing the classic cisoid indolenine as well as the cisoid quinoline building block. Taking advantage of the highly structure directing self-assembly character of the quinoline moiety, the copolymer pSQBC indeed showes a broad, blue-shifted main absorption band in comparison with the monomer unit dSQBC. The shape of the absorption band manifold solely exhibited a minor solvent and temperature dependence indicating a persistent H-aggregate behaviour. Hence, as a proof of concept, it is shown that the optical properties of the polymers (H- and J-aggregate) and the corresponding superstructure can be inherently controlled by an adequate design of monomer precursors. The last chapter of this work deals, in contrast to all other chapters, with intermolecular aggregates. It is shown that the two star-shaped hexasquarainyl benzenes hSQA-1 and hSQA-2 exhibit a strong propensity for self-organisation. Concentration- and temperature-dependent studies reveal a great driving force for self-assembly in acetone. While the larger hSQA-2 instantaneously forms stable aggregates, the aggregates of hSQA-1 shows a pronounced kinetic stability. Taking advantage of the kinetic persistency of these aggregates, the corresponding kinetic activation parameters for aggregation and deaggregation can be assessed. The absorption spectra of both hexasquarainyl benzenes in the aggregated state reveal some striking differences. While hSQA-1 features an intensive, very narrow and blue-shifted absorption band, two red-shifted bands are observed for hSQA-2, which are closely located at the monomer absorption. The very small bandwidth of hSQA-1 are interpreted to be caused by exchange narrowing and pointed towards highly ordered supramolecular aggregates. The concentration-dependent data of the two hexasquarainyl benzenes can be fitted to the dimer-model with excellent correlation coefficients, yielding binding constants in excess of 10^6 M-1, respectively. Such high binding constants are very surprising, considering the unfavourable bulky 3,3-dimethyl groups of the indolenine units which should rather prevent aggregation. Joint theoretical and NMR spectroscopic methods were applied to unravel the supramolecular aggregate structure of hSQA-1, which is shown to consist of two stacked hexasquarainyl benzenes resembling the picture of two stacked bowls.}, subject = {Squaraine}, language = {en} } @phdthesis{Kunz2018, author = {Kunz, Valentin}, title = {Supramolecular Approaches for Water Oxidation Catalysis with Ruthenium Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154820}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The catalytic splitting of water into its elements is an important reaction to establish hydrogen as a solar fuel. The bottle-neck of this process is considered to be the oxidative half reaction generating oxygen, and good catalysts are required to handle the complicated redox chemistry involved. As can be learned from nature, the incorporation of the catalytically active species into an appropriate matrix can help to improve the overall performance. Thus, the aim of the present thesis was to establish novel supramolecular approaches to improve water oxidation catalysis using the catalytically active {Ru(bda)} fragment as key motive (bda = 2,2'-bipyridine-6,6'-dicarboxylate). First, the synthesis of ruthenium catalysts gathering three {Ru(bda)} water oxidation subunits in a macrocyclic fashion is described. By using bridging bipyridine ligands of different lengths, metallosupramolecular macrocycles with distinct sizes have been obtained. Interestingly, an intermediate ring size has been proven to be optimal for the catalytic water oxidation. Detailed kinetic, spectroscopic, and theoretical studies helped to identify the reaction mechanism and to rationalize the different catalytic activities. Furthermore, solubilizing side chains have been introduced for the most active derivative to achieve full water solubility. Secondly, the {Ru(bda)} fragment was embedded into supramolecular aggregates to generate more stable catalytic systems compared to a homogeneous reference complex. Therefore, the catalyst fragment was equipped with axial perylene bisimide (PBI) ligands, which facilitate self-assembly. Moreover, the influence of the different accessible aggregate morphologies on the catalytic performance has been investigated.}, subject = {Ruthenium Komplexe}, language = {en} } @phdthesis{Seifert2018, author = {Seifert, Sabine}, title = {New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C-C Coupling and Core Halogenation-Cyanation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156200}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The thesis describes the development of new synthetic strategies towards planar nanometer-sized and electron-deficient polycyclic aromatic dicarboximides, which are rather unexplored compared with the large variety of electron-rich polycyclic aromatic hydrocarbons and nanographenes. Thus, new polycyclic aromatic systems containing a different number of dicarboximide groups were designed since this class of compounds has revealed its significance in the past due to a range of desirable molecular properties and its high thermal and photochemical stability. The synthetic concept towards these systems includes different C-C coupling techniques that were combined within coupling cascade reactions. Therefore, this thesis provides new insights into the reactivity of aromatic substrates and elucidates mechanistic aspects of C-C coupling cascade reactions to facilitate the precise design of new and desirable materials based on polycyclic aromatic dicarboximides. Furthermore, structure-property relationships as well as the optical and electrochemical properties were investigated by UV/Vis absorption and fluorescence spectroscopy and cyclic or square wave voltammetry. Insights into the molecular structures in the solid state were obtained by single-crystal X-ray analysis. In subsequent studies, highly electron-deficient perylene bisimides and their reduced species have been investigated in detail. Thus, core-functionalized perylene bisimides were synthesized and UV/Vis absorption spectroscopy, spectroelectrochemistry and cyclic or square wave voltammetry were used to determine their optical properties and the stability of the individual reduced species.}, subject = {Kupplungsreaktion}, language = {en} } @phdthesis{Liess2017, author = {Liess, Andreas}, title = {Structure-Property Relationships of Merocyanine Dyes in the Solid State: Charge Transport and Exciton Coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The present thesis demonstrates the importance of the solid state packing of dipolar merocyanine dyes with regard to charge transport and exciton coupling. Due to the charge transport theory for disordered materials, it is expected that high ground state dipole moments in amorphous thin films lead to low mobility values due to a broadening of the density of states. However, due to their inherent dipolarity, merocyanine dyes usually align in antiparallel dimers in an ordered fashion. The examination of twenty different molecules with ground state dipole moments up to 15.0 D shows that by a high dipolarity and well-defined sterics, the molecules pack in a highly regular two-dimensional brickwork-type structure, which is beneficial for hole transport. Utilization of these molecules for organic thin-film transistors (OTFTs) leads to hole mobility values up to 0.21 cm²/Vs. By fabrication of single crystal field-effect transistors (SCFETs) for the derivative showing the highest mobility values in OTFTs, even hole mobilities up to 2.34 cm²/Vs are achieved. Hence, merocyanine based transistors show hole mobility values comparable to those of conventional p-type organic semiconductors and therefore high ground state dipole moments are not necessarily disadvantageous regarding high mobility applications. By examination of a different series of ten merocyanine dyes with the same chromophore backbone but different donor substituents, it is demonstrated that the size of the donor has a significant influence on the optical properties of thin films. For small and rigid donor substituents, a hypsochromic shift of the absorption compared to the monomer absorption in solution is observed due to the card stack like packing of the molecules in the solid state. By utilization of sterical demanding or flexible donor substituents, a zig-zag type packing is observed, leading to a bathochromical shift of the absorption. These packing motifs and spectral shifts with an offset of 0.93 eV of the H- and J-bands comply with the archetype examples of H- and J-aggregates from Kasha's exciton theory.}, subject = {Exziton}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Dhara2017, author = {Dhara, Ayan}, title = {Stimuli-Responsive Self-Assembly and Spatial Functionalization of Organic Cages Based on Tribenzotriquinacenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Within this thesis, synthetic strategies for self-assembled organic cage compounds have been developed that allow for both stimuli-responsive control over assembly/disassembly processes and spatial control over functionalization. To purposefully operate the reversible assembly of organic cages, boron-nitrogen dative bonds have been exploited for the formation of a well-defined, discrete bipyramidal organic assembly in solution. Thermodynamic association equilibria for cage formation have been investigated by Isothermal Titration Calorimetry (ITC). Temperature-dependent NMR studies revealed a reversible cage opening upon heating and quantitative reassembly upon cooling. For the spatial functionalization of organic cages, two divergent molecular building units have been designed and synthesized, namely tribenzotriquinacene derivatives possessing a terminal alkyne moiety at the apical position and a meta-diboronic acid having a pyridyl group at the 2-position. Facile access to a variety of apically functionalized tribenzotriquinacenes has been illustrated by post-synthetic modifications at the terminal alkyne group by Sonogashira cross-coupling and azide-alkyne click reactions. Finally, these apically functionalized tribenzotriquinacene building blocks have been implemented into boronate ester-based organic cage compounds showing modular exohedral functionalities.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Schulze2016, author = {Schulze, Marcus}, title = {Ruthenium Complexes as Water Oxidation Catalysts and Photosensitizers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der vorliegenden Arbeit werden Aspekte der photokatalytischen Wasseroxidationsreaktion behandelt. Der erste Themenschwerpunkt der Dissertation besch{\"a}ftigt sich mit einem supramolekularen Makrozyklus, der drei Rutheniummetallzentren enth{\"a}lt. Dieser neuartige Katalysator zeigt eine sehr hohe katalytische Aktivit{\"a}t und gew{\"a}hrt neue Einblicke in den Mechanismus der Wasseroxidationsreaktion. Des Weiteren wird auf die mit Licht interagierenden Komponenten der photokatalytischen Wasseroxidation eingegangen. Hierbei haben sich azabenz-anellierte Perylenderivate als vielseitige Farbstoffklasse herausgestellt. Die Kombination dieser Farbstoffe mit Metallkomplexen liefert metallorganische Verbindungen, die als Photosensibilisatoren eingesetzt werden k{\"o}nnen.}, subject = {Farbstoff}, language = {en} } @phdthesis{Gershberg2016, author = {Gershberg, Jana}, title = {Self-assembled Perylene Bisimide Dimers and their Interaction with Double-stranded DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136725}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The self-assembly of molecules based on π-π-interactions and hydrogen bonding is of significant importance in nature. These processes enable the formation of complex supramolecular structures with diverse functions. For the transfer of the concepts from nature to artificial supramolecular structures, a basic understanding of those processes is needed. For this purpose, π-conjugated aromatic molecules with an easy synthetic access are suitable as their functionalities can be changed effortless. Perylene bisimide (PBIs) dyes are attractive candidates since they fulfill these requirements owing to their tendency to self-assemble in solution due to their large aromatic π-surfaces. Furthermore, the changes of the optical properties (for instance absorption, emission or circular dichroism) of PBI dyes, caused by their self-assembly, are easy to study experimentally. Structural variations of PBI dyes including additional non-covalent interactions, such as hydro-gen bonding, enable to direct their self-assembly process. Thus, the formation of interesting su-pramolecular structures of PBI dyes could be realized, although, often of undefined size. The aim of this thesis was to develop strategies to restrict the aggregate size of PBI dyes. Therefore, de-fined structural features of PBI molecules were combined and a variation of external influences such as solvent and concentration included. Furthermore, DNA was utilized as a template for the limitation of the aggregate size of PBI dyes. Chapters 1 and 2 provide general information and describe examples from literature which are necessary to understand the following experimental work. The first chapter is based on the inter-actions of various molecules with DNA. Therefore, DNA is considered as a supramolecular biom-acromolecule containing specific structural and functional features to interact with small mole-cules. Afterwards, the main interaction modes of small molecules with DNA such as electrostatic interaction, intercalation and groove binding with corresponding examples are discussed. Among all techniques applied to study the interaction of ligands with DNA, UV/Vis absorption, fluores-cence and circular dichroism spectroscopy were described in detail. At the end of this chapter, examples of already pre-associated systems showing interactions with DNA are presented. The second chapter is focused on the determination and mathematic evaluation of the self-assembly processes. The simplest models such as monomer-dimer and isodesmic model are de-scribed and supplemented by examples. Furthermore, the simplest modification of the isodesmic model, the K2-K model, is presented. Additionally, experimental problems, which may arise dur-ing the investigations of the self-assembly processes, are addressed. For the description of the entire self-assembly process, a sufficiently large concentration range and an appropriate measure-ment method that is sensitive in this concentration range is necessary. Furthermore, the full transi-tion from the monomeric to the aggregated species has to be spectroscopically ascertainable. This enables an accurate mathematic evaluation of the self-assembly process and provides meaningful binding constants. The self-assembly pathway can be controlled by the variation of solvent, con-centration or temperature. However, this pathway can also be directed by a rational design of the molecular structure of the considered system. For example, a specific interplay of π-π-interactions and hydrogen bonding may promote isodesmic as well as cooperative growth into large struc-tures. The main focus of this thesis is to develop strategies to control the aggregate size of PBI dyes (Chapter 3). For this purpose, a PBI scaffold was designed which contains hydrogen bonding amide functions at the imide positions derived from the amino acid L-alanine and solubilizing side groups in the periphery (Figure 81). The variations of the residues R/R' range from didodecylox-yphenyl, didodecylphenyl, dioligo(ethylene glycol)phenyl to branched and linear alkyl chains. The most extensive study of the aggregation behavior was performed for the PBI dye 5. Concen-tration-dependent 1H NMR and UV/Vis absorption measurements clearly revealed the formation of dimers in chloroform. Further investigations by means of 2D NMR, VPO and ITC confirmed the exclusive presence of dimer aggregates of PBI 5 in the investigated concentration range. Mo-lecular modelling studies, supported by NMR and FT-IR experiments, provided structural reasons for the absence of further growth into larger aggregates. The specific combination of π-π interac-tions and hydrogen bonds between the NH groups of the amide groups and the carbonyl oxygen atoms of the PBI core are decisive for the formation of the discrete dimer stack (see Figure 82). The investigations of the aggregation behavior of PBIs 6-9 were less extensive but consistent with the results obtained for PBI 5. However, the determined binding constants vary over a considera-ble range of 1.1 x 102 M-1 (PBI 8) to 1.4 x 104 M-1 (PBI 5). These differences could be attributed to structural variations of the dyes. The electron-rich phenyl substituent promoted the aggregation tendency of PBIs 5-7 compared with 8 and 9 that carry only alkyl side chains. Thus, the π-π in-teractions of bay-unsubstituted PBI cores in combination with hydrogen bonding of the amide functions control the formation of discrete dimers of these PBI dyes. The variation of conditions, such as solvent, change the aggregation behavior of PBI dyes. In the solvents toluene and/or methylcyclohexane, anti-cooperative growth into larger aggregates of PBI 5 was observed (Chapter 4). The important feature of this self-assembly process is the absence of isosbestic points over the whole concentration range in the UV/Vis absorption measurements. The preference for the dimeric species of PBI 5 remained in both solvents as well as in mixtures of them, but upon increasing the concentration these dimers self-assemble into larger aggregates. An important feature of the self-assembly process is the preferred formation of even-numbered aggregates compared to the odd-numbered ones (see Figure 83). Although, the conventional K2-K model provides plausible binding constants, it is not capable to describe the aggregation behavior adequately, since it considers a continuous size distribution. The gradual aggregation process over dimers, tetramers, hexamers, etc. was therefore analyzed with a newly developed K2-K model for anti-cooperative supramolecular polymerization. By the global analysis of the UV/Vis absorption spectra a very good agreement between the experimental and simulated spectra, which were based on the new K2-K model, was obtained. Furthermore, the calculated UV/Vis absorption spectra of a dimer and an aggregate highlighted the most important structural differences. The absorption spectrum of the dimer still has a pronounced vibronic structure which gets lost in the spectrum of the aggregate. In another part of this work, a series of water soluble PBI dyes were described which contain similar PBI scaffolds as PBIs 5-8 (Chapter 5). These PBI dyes self-assemble into similar dimer aggregates in water due to their positively charged side chains causing electrostatic repulsion be-tween the molecules (see Figure 84). Here, however, the self-assembly behavior has not been studied thoroughly in water due to the similarities of already reported PBI dyes. Instead, the focus here is on the characterization of the interactions of these dyes with DNA/RNA. The comprehensive studies using thermal denaturation experiments showed the high stability of these PBI/polynucleotide complexes. The spermine-functionalized PBI dyes having six positive charges showed strong interactions with DNA/RNA which was expressed in a signif-icant increase of the melting temperatures of DNA/RNA (ΔTm values between 7 and > 35 ° C). The dioxa analogues containing only two positive charges had lower enhancement of the melting temperature of DNA/RNA (ΔTm values between 3 and 30 ° C). A similar trend has been observed in the fluorimetric titrations. The spermine-functionalized PBI dyes showed high binding con-stants (log Ks = 9.2 - 9.8), independently of the used polynucleotides. In contrast, the dioxa ana-logues displayed smaller binding constants (log Ks = 6.5 - 7.9) without any correlation between binding affinity and binding strength of the PBI dyes and the applied polynucleotides. The CD-spectroscopic measurements revealed significant differences in the binding properties of the dyes with DNA/RNA. They were dependent on the steric hindrance of the amino acid residues at the imide position and their configuration on one side and the grooves properties of ds-DNA/RNA on the other side. The spectroscopic results confirmed the formation of excitonically coupled PBI dimers in the minor groove of ds-DNA and the major groove of ds-RNA. Depending on the se-quence, the grooves of the polynucleotides provide different amount of space for embedding molecules. The guanine amino groups protrude into the minor groove of the polynucleotide poly(dG-dC)2 increasing the steric hindrance, which is not the case for poly(dA-dT)2. Molecular modeling studies showed that the PBI dimers penetrate deeper into the groove of poly(dA-dT)2 due to the absence of the steric hindrance, in comparison to the groove of poly(dG-dC)2 (see Figure 85).}, subject = {Perylentetracarbons{\"a}urederivate}, language = {en} } @phdthesis{Ceymann2016, author = {Ceymann, Harald}, title = {Synthesis and Optical Spectroscopic Properties of Squaraine Superchromophores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In this work the successful synthesis, the linear and nonlinear spectroscopic properties as well as the electrochemical behaviour of some linear and star-shaped squaraine superchromophores that are based on indolenine derivatives were presented. The attempt to synthesise similar chromophores which contained only benzothiazole squaraines failed unfortunately. However, one trimer that contained mixed benzothiazole indolenine squaraines could be synthesised and investigated as well. The linear spectroscopic properties, like red-shift and broadening of the absorption, of all superchromophores could be explained by exciton coupling theory. The heterochromophores (SQA)2(SQB)-N, (SQA)(SQB)2-N and (SQA)(SQB)-NH displayed additional to the typical squaraine fluorescence from the lowest excited state some properties that could be assigned to localised states. While the chromophores with N-core showed very small emission quantum yields, the chromophores with the other cores and the linear oligomers display an enhancement compared to the monomers. Transient absorption spectroscopy experiments of the star-shaped superchromophores showed, that their formally degenerated S1 states are split due to a deviation of the ideal C3 symmetry. This is also the reason for the observation of an absorption band for the highest exciton state, which is derived from the S1-state of the monomers, as its transition-dipole moment would be zero in the symmetrical case. The linear oligomers and the star-shaped superchromophores with a benzene or triarylamine core showed at least additive, sometimes even weak cooperative, behaviour in the two-photon absorption experiments. Additional to higher two-photon absorption cross sections the chromophores showed a pronounced broadening of the nonlinear absorption, due to symmetry breaking and a higher density of states. Unfortunately it was not possible to solve the problem of the equilibrium of the cisoid and the transoid structure of donor substituted azulene squaraines, due to either instability of the squaraines or steric hindrance.}, subject = {Squaraine}, language = {en} } @phdthesis{Rehm2015, author = {Rehm, Stefanie}, title = {Spermine-functionalized Perylene Bisimide Dyes: Synthesis and Self-assembly in Water}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123201}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The main objective of this thesis was the design and synthesis of perylene bisimide dyes with sufficient water-solubility for the construction of self-assembled architectures in aqueous solutions. Beside these tasks another goal of this project was the control over the self-assembly process in terms of aggregate size and helicity, respectively. Within this thesis an appropriate synthesis for spermine-functionalized perylene bisimide dyes was developed and conducted successfully. The characterization of these building blocks and their course of self-assembly were investigated by NMR, UV/Vis and fluorescence spectroscopy as well as by atomic force and transmission electron microscopy. For the better understanding of the experimental results theoretical calculations were performed.}, subject = {Perylenderivate}, language = {en} } @phdthesis{Steeger2015, author = {Steeger, Markus}, title = {Energy and Charge Transfer in Donor-Acceptor Substituted Hexaarylbenzenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112520}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The focus of this work was the investigation of energy transfer between charge transfer states. For this purpose the multidimensional chromophores HAB-S, HAB-A, B1 and B2 were synthesised, each consisting of three electron donor and three electron acceptor redox centres linked symmetrically or asymmetrically by the hexaarylbenzene framework. Triarylamines represent in all these compounds the electron donors, whereas the electron poor centres were triarylboranes in B1 and B2 and PCTM centres in HAB-S and HAB-A, respectively. The hexaarylbenzenes were obtained by cobalt catalysed cyclotrimerisation of the respective tolan precursors. In addition, Star was synthesised, which consists of a central PCTM linked to three triarylamin centres by tolan bridging units in a star-like configuration. The hexaarylbenzene S1a/b substituted with six squaraine chromophores could not be realised. It is assumed that the cyclotrimerisation catalyst Co2(CO)8 does not tolerate the essential hydroxyl groups in the tolan precursor S2a. The alternative reaction pathway to execute the cyclotrimerisation reaction first and introduce the hydroxyl groups thereafter failed as well, because the required hexaarylbenzene substituted by six semisquaric acid moieties could not be synthesised. However, energy transfer interactions could be investigated in the tolan precursor S2a with two squaraine units to obtain information about the electronic coupling provided by the tolan bridge. For all multidimensional compounds model molecules were synthesised with only a single donor-acceptor pair (B3, Star-Model and HAB-Model). This allows a separate consideration of energy and charge transfer processes. It has to be stressed that in all before mentioned multidimensional compounds the "through bond" energy transfer interaction between neighbouring IV-CT states is identical to a transfer of a single electron between two redox centres of the same kind (e.g. TAA -> TAA+). The latter can be analysed by electron transfer theory. This situation is observed when the two IV-CT states transferring energy share one redox centre. All compounds containing PCTM centres were characterised by paramagnetic resonance spectroscopy. Thereby, a weak interaction between the three PCTM units in HAB-S and HAB-A was observed. In addition, when oxidising Star-Model, a strongly interacting singlet or triplet state was obtained. In contrast, signals corresponding to a weakly interacting biradical were obtained for HAB-Model+. This indicates a strong electronic coupling between the redox centres provided by the tolan bridge and a weak coupling when linked by the hexaarylbenzene. This trend is supported by UV/Vis/NIR absorption measurements. The analysis of the observed IV-CT absorption bands by electron transfer theory reveals a weak electronic coupling of V = 340 cm-1 in HAB-Model and a distinctly stronger coupling of V = 1190-2900 cm-1 in Star-Model. In the oxidised HAB-S+, Star+ and Star-Model+ a charge transfer reversed from that of the neutral species, that is, from the PCTM radical to the electron poorer cationic TAA centre, was observed by spectroelectrochemistry. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed, induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (tau = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together the identity between energy transfer and electron transfer in the specific systems were made apparent. It has to be remarked that neither energy transfer nor charge transfer theory can account for the very fast energy transfer in Star. The electrochemical and photophysical properties of B1 and B2 were investigated by cyclic voltammetry, absorption and fluorescence measurements and were compared to B3 with only one neighbouring donor-acceptor pair. For the asymmetric B2 CV measurements show three oxidations as well as three reduction peaks whose peak separation is greatly influenced by the conducting salt due to ion-pairing and shielding effects. Consequently, peak separations cannot be interpreted in terms of electronic couplings in the generated mixed valence species. Transient absorption, fluorescence solvatochromism and absorption spectra show that charge transfer states from the amine to the boron centres are generated after optical excitation. The electronic donor-acceptor interaction is weak though as the charge transfer has to occur predominantly through space. The electronic coupling could not be quantified as the CT absorption band is superimposed by pi-pi* transitions localised at the amine and borane centres. However, this trend is in good agreement to the weak coupling measured for HAB-Model. Both transient absorption and fluorescence upconversion measurements indicate an ultrafast stabilisation of the charge transfer state in B1- B3 similar to the corresponding observations in HAB-S and Star. Moreover, the excitation energy of the localised excited charge transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within fluorescence lifetime (ca. 60 ns). This was proved by steady state fluorescence anisotropy measurements, which further indicate a symmetry breaking in the superficially symmetric HAB. Anisotropic fluorescence upconversion measurements confirm this finding and reveal a time constant of tau = 2-3 ps for the energy transfer in B1 and B2. It has to be stressed that, although the geometric structures of B1 and HAB-S are both based on the same framework and furthermore the neighbouring CT states show in both cases similar Coulomb couplings and negligible "through bond" couplings, very fast energy transfer is observed in B1 whereas in HAB-S the energy is not redistributed within the excited state lifetime. To explain this, it has to be kept in mind that the energy transfer and the relaxation of the CT state are competing processes. The latter is influenced moreover by the solvent viscosity. Hence, it is assumed that this discrepancy in energy transfer behaviour is caused by monitoring the excited state in solvents of varying viscosity. Adding fluoride ions causes the boron centres to lose their acceptor ability due to complexation. Consequently, the charge transfer character in the donor-acceptor chromophores vanishes which could be observed in both the absorption and fluorescence spectra. However, the fluoride sensor ability of the boron centre is influenced strongly by the moisture content of the solvent possibly due to hydrogen bonding of water to the fluoride anions. UV/Vis/NIR absorption measurements of S2a show a red-shift by 1800 cm-1 of the characteristic squarain band compared to the model compound S20. From exciton theory a Coulomb coupling of V = 410 cm-1 is calculated which cannot account for this strong spectral shift. Consequently, "through-bond" interactions have to contribute to the strong communication between the two squaraine chromophores in S2a. This is in accordance with the strong charge transfer coupling calculated for the tolan spacer in Star-Model.}, subject = {Energietransfer }, language = {en} } @phdthesis{Fimmel2015, author = {Fimmel, Benjamin}, title = {Perylene Bisimide Foldamers: Synthesis and In-Depth Studies of the Ground- and Excited States Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In this thesis the syntheses and detailed investigations on two foldable PBI systems were presented. The reversible, solvent-dependet folding/unfolding-behavior was used to study the ground and excited states properties of folda-dimer and folda-trimer by means of different spectroscopic methods as well as theoretical studies. The switching between charge transfer or excimer formation pathways of photoexcited molecules influenced by the spatial arrangement of chromophores within defined dye systems illustrates the impact of conformational preferences on functional properties.}, subject = {Perylenbisdicarboximide }, language = {en} } @phdthesis{Rest2015, author = {Rest, Christina}, title = {Self-assembly of amphiphilic oligo(phenylene ethynylene)-based (bi)pyridine ligands and their Pt(II) and Pd(II) complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The presented work in the field of supramolecular chemistry describes the synthesis and detailed investigation of (bi)pyridine-based oligo(phenylene ethynylene) (OPE) amphiphiles, decorated with terminal glycol chains. The metal-ligating property of these molecules could be exploited to coordinate to Pd(II) and Pt(II) metal ions, respectively, resulting in the creation of novel metallosupramolecular π-amphiphiles of square-planar geometry. The focus of the presented studies is on the self-assembly behaviour of the OPE ligands and their corresponding metal complexes in polar and aqueous environment. In this way, the underlying aggregation mechanism (isodesmic or cooperative) is revealed and the influence of various factors on the self-assembly process in supramolecular systems is elucidated. In this regard, the effect of the molecular design of the ligand, the coordination to a metal centre as well as the surrounding medium, the pH value and temperature is investigated.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{ArjonaEsteban2015, author = {Arjona Esteban, Alhama}, title = {Merocyanine Dyes as Organic Semiconductors for Vacuum-processed Solar Cell and Transistor Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The present thesis comprises the synthesis of new functional merocyanine dyes, the study of their electro-optical properties as well as solid state packing and their application as p-type semiconductor materials in transistor and solar cell devices. The absorption properties of the obtained compounds could be modified by variation of the donor unit, the introduction of electron-withdrawing substituents in the acceptor unit or elongation of the polymethine chain. For a particular dye, the absorption band could be shifted by more than 160 nm by increasing the solvent polarity due to a conformational switch between a merocyanine-like and a cyanine-like structure. Single crystal analyses revealed that the studied dyes tend to pack either in an antiparallel fashion forming dimers with no overall dipole moment or in a staircase-like pattern where the dipole moments point to the same direction and are only balanced by another staircase oriented in the opposite direction (stair dimer). With respect to application as semiconductor materials, the latter packing arrangement resulted most favorable for charge carrier mobility. We concluded that this packing motif is preserved in the solar cell devices, where the selenium-containing dye afforded the highest performance of this series for an optimized planar-mixed heterojunction solar cell (6.2 \%).}, subject = {Merocyanine}, language = {en} } @phdthesis{Klein2015, author = {Klein, Johannes Hubert}, title = {Electron Transfer and Spin Chemistry in Iridium-Dipyrrin Dyads and Triads}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The successful synthesis of a family of donor-iridium complex-acceptor triads (T1-T6, pMV1 and mMV1) and their electrochemical and photophysical properties were presented in this work. Triarylamines (TAA) were used as donors and naphthalene diimide (NDI) as acceptor. A bis-cyclometalated phenylpyrazole iridium dipyrrin complex acts as a photosensitiser. In addition, a molecular structure of T1 was obtained by single crystal X-ray diffraction. Transient absorption spectroscopy experiments of these triads resembled that upon excitation a photoinduced electron transfer efficiently generates long-lived, charge-separated (CS) states. Thereby, the electron-transfer mechanism depends on the excitation energy. The presence of singlet and triplet CS states was clarified by magnetic-field dependent transient-absorption spectroscopy in the nanosecond time regime. It was demonstrated that the magnetic field effect of charge-recombination kinetics showed for the first time a transition from the coherent to the incoherent spin-flip regime. The lifetime of the CS states could be drastically prolonged by varying the spacer between the iridium complex and the NDI unit by using a biphenyl instead of a phenylene unit in T4. A mixed-valence (MV) state of two TAA donors linked to an iridium metal centre were generated upon photoexcitation of triad pMV1 and mMV1. The mixed-valence character in these triads was proven by the analysis of an intervalence charge-transfer (IV-CT) band in the (near-infrared) NIR spectral region by femtosecond pump-probe experiments. These findings were supported by TD-DFT calculations. The synthesis of dyads (D1-D4) was performed. Thereby the dipyrrin ligand was substituted with electron withdrawing groups. The electrochemical and photophysical characterisation revealed that in one case (D4) it was possible to generate a CS state upon photoexcitation.}, subject = {Elektronentransfer}, language = {en} } @phdthesis{BertleffZieschang2014, author = {Bertleff-Zieschang, Nadja Luisa}, title = {Galectin-1: A Synthetic and Biological Study of a Tumor Target}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101529}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Galectin-1 (hGal-1) is overexpressed by numerous cancer types and previously conducted studies confirmed that the β-galactoside-binding protein mediates various molecular interactions associated with tumor growth, spread and survival. Upon interaction with carbohydrate-based binding epitopes of glycan structures on human cell surfaces galectin-1 induces proliferative, angiogenetic and migratory signals and modulates negative T cell regulation which essentially helps the tumor to evade the immune response. These findings attributed galectin-1 a pivotal role in tumor physiology and strongly suggest the protein as target for diagnostic and therapeutic applications. Within the scope of this work a strategy was elaborated for designing tailor-made galectin-1 ligands by functionalizing selected hydroxyl groups of the natural binding partner N-acetyllactosamine (LacNAc) that are not involved in the sophisticated interplay between the disaccharide and the protein. Synthetic modifications intended to introduce chemical groups i) to address a potential binding site adjacent to the carbohydrate recognition domain (CRD) with extended hGal-1-ligand interactions, ii) to implement a tracer isotope for diagnostic detection and iii) to install a linker unit for immobilization on microarrays. Resulting structures were investigated regarding their targeting ability towards galectin-1 by cocrystallization experiments, SPR and ITC studies. Potent binders were further probed for their diagnostic potential to trace elevated galectin-1 levels in microarray experiments and for an application in positron emission tomography (PET).}, subject = {Organische Synthese}, language = {en} } @phdthesis{Paasche2013, author = {Paasche, Alexander}, title = {Mechanistic Insights into SARS Coronavirus Main Protease by Computational Chemistry Methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79029}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The SARS virus is the etiological agent of the severe acute respiratory syndrome, a deadly disease that caused more than 700 causalities in 2003. One of its viral proteins, the SARS coronavirus main protease, is considered as a potential drug target and represents an important model system for other coronaviruses. Despite extensive knowledge about this enzyme, it still lacks an effective anti-viral drug. Furthermore, it possesses some unusual features related to its active-site region. This work gives atomistic insights into the SARS coronavirus main protease and tries to reveal mechanistic aspects that control catalysis and inhibition. Thereby, it applies state-of-the-art computational methods to develop models for this enzyme that are capable to reproduce and interpreting the experimental observations. The theoretical investigations are elaborated over four main fields that assess the accuracy of the used methods, and employ them to understand the function of the active-site region, the inhibition mechanism, and the ligand binding. The testing of different quantum chemical methods reveals that their performance depends partly on the employed model. This can be a gas phase description, a continuum solvent model, or a hybrid QM/MM approach. The latter represents the preferred method for the atomistic modeling of biochemical reactions. A benchmarking uncovers some serious problems for semi-empirical methods when applied in proton transfer reactions. To understand substrate cleavage and inhibition of SARS coronavirus main protease, proton transfer reactions between the Cys/His catalytic dyad are calculated. Results show that the switching between neutral and zwitterionic state plays a central role for both mechanisms. It is demonstrated that this electrostatic trigger is remarkably influenced by substrate binding. Whereas the occupation of the active-site by the substrate leads to a fostered zwitterion formation, the inhibitor binding does not mimic this effect for the employed example. The underlying reason is related to the coverage of the active-site by the ligand, which gives new implications for rational improvements of inhibitors. More detailed insights into reversible and irreversible inhibition are derived from in silico screenings for the class of Michael acceptors that follow a conjugated addition reaction. From the comparison of several substitution patterns it becomes obvious that different inhibitor warheads follow different mechanisms. Nevertheless, the initial formation of a zwitterionic catalytic dyad is found as a common precondition for all inhibition reactions. Finally, non-covalent inhibitor binding is investigated for the case of SARS coranavirus main protease in complex with the inhibitor TS174. A novel workflow is developed that includes an interplay between theory and experiment in terms of molecular dynamic simulation, tabu search, and X-ray structure refinement. The results show that inhibitor binding is possible for multiple poses and stereoisomers of TS174.}, subject = {SARS}, language = {en} } @phdthesis{Gsaenger2013, author = {Gs{\"a}nger, Marcel}, title = {Organic Thin-Film Transistors Based on Dipolar Squaraine Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In summary, it can be stated that the herein studied set of acceptor-substituted squaraine dyes can be seen as potent candidates for OTFTs. Furthermore, their transistor performance can be easily tuned to obtain hole mobilities up to 0.45 cm2/Vs from solution and 1.3 cm2/Vs from sublimation by choosing adequate deposition techniques. In the end, a probable structural model derived from studies of the thin-film morphology by methods such as optical spectroscopy, AFM and X-ray even facilitated the clarification of the observed charge transport behavior.}, subject = {Organische Chemie}, language = {en} } @phdthesis{Duerrbeck2013, author = {D{\"u}rrbeck, Nina}, title = {Photoinduced Charge-Transfer Processes in Redox Cascades based on Triarylamine Donors and the Perchlorinated Triphenylmethyl Radical Acceptor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90078}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this work, a series of redox cascades was synthesised and investigated in view of their photophysical and electrochemical properties. The cascades are based on a perchlorinated triphenylmethyl radical acceptor and two triarylamine donors. Absorption spectra showed the presence of charge-transfer bands in the NIR range of the spectra, which pointed to the population of a charge-transfer state between a triarylamine donor and the radical acceptor. A weak to moderate emission in the NIR range of the spectra was observed for all compounds in cyclohexane. Spectroelectrochemical measurements were used to investigate the characteristic spectral features of the oxidised and reduced species of all compounds. Transient absorption spectra in the ns- and fs-time regime revealed an additional hole transfer in the cascades between the triarylamine donors, resulting in a charge-separated state. Charge-separation and -recombination processes were found to be located in the ps-time regime.}, subject = {Ladungstransfer}, language = {en} } @phdthesis{Berberich2012, author = {Berberich, Martin}, title = {Rylene Bisimide-Diarylethene Photochromic Systems for Non-Destructive Memory Read-out}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Doktorarbeit zeigt deutlich verbesserte aus Rylenbisimiden und Diarylethenen aufgebaute, photochrome Systeme f{\"u}r das nicht-destruktive Auslesen von Fluoreszenz. Dabei wird die Fluoreszenz der Emittereinheit durch photoinduzierten Elektronentransfer nur zu einer isomeren Form des Photochromes gel{\"o}scht. Die Triebkraft f{\"u}r den Fluoreszenz-l{\"o}schenden Elektronentransfer wurde mittels Rehm-Weller-Gleichung berechnet. Die erhaltenen Systeme erf{\"u}llen die notwendigen Anforderungen f{\"u}r ein nicht-destruktives Auslesen in einem auf Schreiben, Auslesen und L{\"o}schen basierenden fluoreszierenden Datenspeicher.}, subject = {Photochromie}, language = {en} } @phdthesis{Zhang2012, author = {Zhang, Guoliang}, title = {Phytochemical Research on Two Ancistrocladus Species, Semi-Synthesis of Dimeric Naphthylisoquinoline Alkaloids, and Structure Optimization of Antitumoral Naphthoquinones}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Plant-derived natural products and their analogs continue to play an important role in the discovery of new drugs for the treatment of human diseases. Potentially promising representatives of secondary metabolites are the naphthylisoquinoline alkaloids, which show a broad range of activities against protozoan pathogens, such as plasmodia, leishmania, and trypanosoma. Due to the increasing resistance of those pathogens against current therapies, highly potent novel agents are still urgently needed. Thus, it is worthy to discover new naphthylisoquinoline alkaloids hopefully with pronounced bioactivities by isolation from plants or by synthesis. The naphthylisoquinoline alkaloids are biosynthetically related to another class of plant-derived products, the naphthoquinones, some of which have been recently found to display excellent anti-multiple myeloma activities without showing any cytotoxicities on normal blood cells. Multiple myeloma still remains incurable, although remissions may be induced with co-opted therapeutic treatments. Therefore, more potent naphthoquinones are urgently required, and can be obtained by isolation from plants or by synthesis. In detail, the results in this thesis are listed as follows: 1) Isolation and characterization of naphthylisoquinoline alkaloids from the stems of a Chinese Ancistrocladus tectorius species. Nine new naphthylisoquinoline alkaloids, named ancistectorine A1 (60), N-methylancistectorine A1 (61), ancistectorine A2 (62a), 5-epi-ancistectorine A2 (62b), 4'-O-demethylancistectorine A2 (63), ancistectorine A3 (64), ancistectorine B1 (65), ancistectorine C1 (66), and 5-epi-ancistrolikokine D (67) were isolated from the Chinese A. tectorius and fully characterized by chemical, spectroscopic, and chiroptical methods. Furthermore, the in vitro anti-infectious activities of 60-62 and 63-66 have been tested. Three of the metabolites, 61, 62a, and 62b, exhibited strong antiplasmodial activities against the strain K1 of P. falciparum without showing significant cytotoxicities. With IC50 values of 0.08, 0.07, and 0.03 μM, respectively, they were 37 times more active than the standard chloroquine (IC50 = 0.26 μM). Moreover, these three compounds displayed high antiplasmodial selectivity indexes ranging from 100 to 3300. According to the TDR/WHO guidelines, they could be considered as lead compounds. In addition, seven alkaloids, 69-74 (structures not shown here), were isolated from A. tectorius that were known, but new to the plant, together with another fourteen known compounds (of these, only the structures of the three main alkaloids, 5a, 5b, and 78 are shown here), which had been previously found in the plant. The three metabolites ancistrocladine (5a), hamatine (5b), and (+)-ancistrocline (78) were found to show no or moderate activities against the MM cell lines. 2) Isolation and characterization of naphthylisoquinoline alkaloids from the root bark of a new, botanically yet undescribed Congolese Ancistrocladus species. An unprecedented dimeric Dioncophyllaceae-type naphthylisoquinoline alkaloid, jozimine A2 (84), as first recognized by G. Bauckmann from an as yet undescribed Ancistrocladus species, was purified and characterized as part of this thesis. Its full structural assignment was achieved by spectroscopic and chiroptical methods, and further confirmed by an X-ray diffraction analysis, which had never succeeded for any other dimeric naphthylisoquinoline alkaloids before. Structurally, the dimer is composed of two identical 4'-O-demethyldioncophylline A halves, coupled through a sterically hindered central axis at C-3',3'' of the two naphthalene moieties. Pharmacologically, jozimine A2 (84) showed an extraordinary antiplasmodial activity (IC50 = 1.4 nM) against the strain NF54 of P. falciparum. Beside jozimine A2 (85), another new alkaloid, 6-O-demethylancistrobrevine C (84), and four known ones, ancistrocladine (5a), hamatine (5b), ancistrobrevine C (86), and dioncophylline A (6) were isolated from the Ancistrocladus species, the latter in a large quantity (~500 mg), showing that the plant produces Ancistrocladaceae-type, mixed-Ancistrocladaceae/Dioncophyllaceae-type, and Dioncophyllaceae-type naphthyl- isoquinoline alkaloids. Remarkably, it is one of the very few plants, like A. abbreviatus, and A. barteri, that simultaneously contain typical representatives of all the above three classes of alkaloids. 3) Semi-synthesis of jozimine A2 (85), 3'-epi-85, jozimine A3 (93) and other alkaloids from dioncophylline A (6). The dimeric naphthylisoquinoline alkaloids, jozimine A2 (85) and 3'-epi-85, constitute rewarding synthetic targets for a comparative analysis of their antiplasmodial activities and for a further confirmation of the assigned absolute configurations of the isolated natural product of 85. They were semi-synthesized in a four-step reaction sequence from dioncophylline A (6) in cooperation with T. B{\"u}ttner. The key step was a biomimetic phenol-oxidative dimerization at C-3' of the N,O-dibenzylated derivative of 89 by utilizing Pb(OAc)4. This is the first time that the synthesis of such an extremely sterically hindered (four ortho-substituents) naphthylisoquinoline alkaloid - with three consecutive biaryl axes! - has been successfully achieved. A novel dimeric naphthylisoquinoline, jozimine A3 (93), bearing a 6',6''-central biaryl axis, was semi-synthesized from 5'-O-demethyldioncophylline A (90) by a similar biomimetic phenol-oxidative coupling reaction as a key step, by employing Ag2O. HPLC analysis with synthetic reference material of 3'-epi-85 and 93 for co-elution revealed that these two alkaloids clearly are not present in the crude extract of the Ancistrocladus species from which jozimine A2 (85) was isolated. This evidences that jozimine A2 (85) is very specifically biosynthesized by the plant with a high regio- and stereoslectivity. Remarkably, the two synthetic novel dimeric naphthylisoquinoline alkaloids 3'-epi-85 and 93 were found to display very good antiplasmodial activities, albeit weaker than that of the natural and semi-synthetic product 85. Additionally, the two compounds 3'-epi-85 and 93 possessed high or moderate selectivity indexes, which were much lower than that of 85. However, they can still be considered as new lead structures. Two unprecedented oxidative products of dioncophylline A, the diastereomeric dioncotetralones A (94a) and B (94b), were synthesized from dioncophylline A (6) in a one-step reaction. Remarkably, the aromatic properties in the "naphthalene" and the "isoquinoline" rings of 94a and 94b are partially lost and the "biaryl" axis has become a C,C-double bond, so that the two halves are nearly co-planar to each other, which has never been found among any natural or synthetic naphthylisoquinoline alkaloid. Their full structural characterization was accomplished by spectroscopic methods and quantum-chemical CD calculations (done by Y. Hemberger). The presumed reaction mechanism was proposed in this thesis. In addition, one of the two compounds, 94a, exhibited a highly antiplasmodial activity (IC50 = 0.09 μM) with low cytotoxicity, and thus, can be considered as a new promising lead structure. Its 2'-epi-isomer, 94b, was inactive, evidencing a significant effect of chirality on the bioactivity. Of a number of naphthylisoquinoline alkaloids tested against the multiple-myeloma cell lines, the three compounds, dioncophylline A (6), 4'-O-demethyldioncophylline A (89), and 5'-O-demethyldioncophylline A (90) showed excellent activities, even much stronger than dioncoquinones B (10), C (102), the epoxide 175, or the standard drug melphalan. 4) Isolation and characterization of bioactive naphthoquinones from cell cultures of Triphyophyllum peltatum. Three new naphthoquinones, dioncoquinones C (102), D (103), and E (104), the known 8-hydroxydroserone (105), which is new to this plant, and one new naphthol dimer, triphoquinol A (107), were isolated from cell cultures of T. peltatum in cooperation with A. Irmer. Dioncoquinone C (102) showed an excellent activity against the MM cells, very similar to that of the previously found dioncoquinone B (10), without showing any inhibitory effect on normal cells. The other three naphthoquinones, 103105, were inactive or only weakly active. 5) Establishment of a new strategy for a synthetic access to dioncoquinones B (10) and C (102) on a large scale for in vivo experiments and for the synthesis of their analogs for first SAR studies. Before the synthesis of dioncoquinone B (10) described in this thesis, two synthetic pathways had previously been established in our group. The third approach described here involved the preparation of the joint synthetic intermediate 42 with the previous two routes. The tertiary benzamide 135 was ortho-deprotonated by using s-BuLi/TMEDA, followed by transmetallation with MgBr2▪2Et2O, and reaction with 2-methylallyl bromide (139). It resulted in the formation of ortho-allyl benzamide 140, which was cyclized by using methyl lithium to afford the naphthol 42. This strategy proved to be the best among the established three approaches with regard to its very low number of steps and high yields. By starting with 136, this third strategy yielded the related bioactive natural product, dioncoquinone C (102), which was accessed by total synthesis for the first time. To identify the pharmacophore of the antitumoral naphthoquinones, a library of dioncoquinone B (10) and C (102) analogs were synthesized for in vitro testing. Among the numerous naphthoquinones tested, the synthetic 7-O-demethyldioncoquinone C (or 7-O-hydroxyldioncoquinone B) (145), constitutes another promising basic structure to develop a new anti-MM agent. Furthermore, preliminary SAR results evidence that the three hydroxy functions at C-3, C-5, and C-6 are essential for the biological properties as exemplarily shown through the compounds 10, 102, and 145. All other mixed OH/OMe- or completely OMe-substituted structures were entirely inactive. By a serendipity the expoxide 175 was found to display the best anti-MM activity of all the tested isolated metabolites from T. peltatum, the synthesized naphthoquinones, and their synthetic intermediates. Toxic effects of 175 on normal cells were not observed, in contrast to the high toxicities of all other epoxides. Thus, the anti-MM activity of 175 is of high selectivity. The preliminary SAR studies revealed that the 6-OMe group in 175 is required, thus differed with the above described naphthoquinones (where 6-OH is a requisite in 10, 102, and 145), which evidenced potentially different modes of action for these two classes of compounds. 6) The first attempted total synthesis of the new naturally occurring triphoquinone (187a), which was recently isolated from the root cultures of T. peltatum in our group. A novel naphthoquinone-naphthalene dimer, 187a (structure shown in Chapter 10), was isolated in small quantities from the root cultures of T. peltatum. Thus, its total synthesis was attempted for obtaining sufficient amounts for selected biotestings. The key step was planned to prepare the extremely sterically hindered (four ortho-substituents) binaphthalene 188 by a coupling reaction between the two 2-methylnaphthalene derivatives. Test reactions involving a system of two simplified 2-methylnaphthylboron species and 2-methylnaphthyl bromide proved the Buchwald ligand as most promising. The optimized conditions were then applied to the two true - highly oxygenated - coupling substrates, between the 2-methylnaphthylboron derivatives 210, 211, 213, or 214 and the 2-methylnaphthyl iodides (or bromides) 215 (206), 215 (206), 212 (205), or 212 (205), respectively. Unfortunately, this crucial step failed although various bases and solvent systems were tested. This could be due to the high electron density of the two coupling substrates, both bearing strongly OMOM/OMe-donating function groups. Therefore, a more powerful catalyst system or an alternative synthetic strategy must be explored for the total synthesis of 187a. 7) Phytochemical investigation of the Streptomyces strain RV-15 derived from a marine sponge. Cyclodysidins A-D (216-219), four new cyclic lipopeptides with a- and ß-amino acids, were isolated from the Streptomyces strain RV15 derived from a marine sponge by Dr. U. Abdelmohsen. Their structures were established as cyclo-(ß-AFA-Ser-Gln-Asn-Tyr-Asn-Ser-Thr) by spectroscopic analysis using 2D NMR techniques and CID-MS/MS in the course of this thesis. In conclusion, the present work contributes to the discovery of novel antiplasmodial naphthylisoquinoline alkaloids and antitumoral naphthoquinones, which will pave the way for future studies on these two classes of compounds.}, subject = {Ancistrocladus}, language = {en} } @phdthesis{Qamar2012, author = {Qamar, Riaz-ul}, title = {Synthesis of functionalized molecular probes for bioorthogonal metabolic glycoengineering}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73378}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Biomolecules are difficult to investigate in their native environment. The vast complexity of cellular systems and seldom availability of chemical reactions compatible with the physiological milieu make it a challenging task. Bioorthogonal chemical reactions serve as a key to achieve selective ligation, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionalities necessary to sustain life. In this dissertation, we focused on the synthesis of chemical reporters and probe molecules for bioorthogonal labeling through click reaction. Initially, sialic acid derivatives with a linker containing terminal alkyne functionality were synthesized. After the synthesis of azide derivatives of fluorescent dyes as counter partners, they were conjugated with sialic acids through Cu(I) catalyzed alkyne azide cycloaddition (CuAAC). The successful in vitro conjugation of Sia and fluorescent dyes was followed by metabolic tagging of human larynx carcinoma (HEp-2) and the carcinoma of Chinese hamster ovary (CHO­K1) with alkynated Sia that were subsequently ligated with fluorescein azide. Finally, the stained cells were subjected to fluorescent microscopy to obtain their images. To enable the click reaction compatible to in vivo applications, the reactivity of cyclooctyne was enhanced by two different approaches. In a first approach, following the Bertozzi's strategy, two fluorine atoms were introduced adjacent to the alkyne to lower the LUMO. In a second strategy the ring strain of cyclooctyne was attempted to be enhanced by the introduction of an amide group. In addition, glutarimide derivatives with free amino and carboxylic acid functional groups were synthesized by domino-Michael addition-cyclization-reaction.}, subject = {Click-Chemie}, language = {en} } @phdthesis{Ojala2012, author = {Ojala, Antti}, title = {Merocyanine Dyes as Donor Materials in Vacuum-Deposited Organic Solar Cells: Insights into Structure-Property-Performance Relationships}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70073}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In this study, a double-donor concept is used to improve the performance of thermally evaporated merocyanine(s)/C60 bulk heterojunction (BHJ) solar cells. It is shown that the co-evaporation of two merocyanine dyes with absorption bands at ~ 500 nm (SW dye) and ~ 650 nm (LW dye), respectively, together with C60 fullerene results in an improvement of open-circuit voltage (VOC), short-circuit current (JSC) as well as total power conversion efficiency (PCE) compared to the best single-donor cell. The enhancement of JSC is attributed to a higher photon harvesting efficiency of the mixed-donor devices due to a better spectral coverage.}, subject = {Merocyanine}, language = {en} } @phdthesis{Shao2012, author = {Shao, Changzhun}, title = {Programming Self-assembly: Formation of Discrete Perylene Bisimide Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69298}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The objective of this thesis focuses on the development of strategies for precise control of perylene bisimide (PBI) self-assembly and the in-depth elucidation of structural and optical features of discrete PBI aggregates by means of NMR and UV/Vis spectroscopy. The strategy for discrete dimer formation of PBIs is based on delicate steric control that distinguishes the two facets of the central perylene surface. The strategy applied in this thesis for accessing discrete PBI quadruple and further oligomeric stacks relies on backbone-directed PBI self-assembly. For this purpose, two tweezer-like PBI dyads bearing the respective rigid backbones, diphenylacetylene (DPA) and diphenylbutydiyne (DPB), were synthesized. The distinct aggregation behavior of these structurally similar PBI dyads can be ascribed to the intramolecular distance between the two PBI chromophores imparted by the DPA and DPB spacers.}, subject = {Farbstoff}, language = {en} } @phdthesis{Beer2011, author = {Beer, Meike Vanessa}, title = {Correlation of ligand density with cell behavior on bioactive hydrogel layers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigte sich mit der Quantifizierung von Zelladh{\"a}sion vermittelnden Liganden in und auf d{\"u}nnen Hydrogelschichten, die zur Oberfl{\"a}chenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis f{\"u}r diese Arbeit verwendet. Diese Hydrogele k{\"o}nnen auf zwei Weisen funktionalisiert werden. Liganden k{\"o}nnen entweder mit der Prepolymerl{\"o}sung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenl{\"o}sung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, besch{\"a}ftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, w{\"a}hrend sich der zweite Teil auf die oberfl{\"a}chensensitive Quantifizierung von Zelladh{\"a}sion vermittelnden Molek{\"u}len an der biologischen Grenzfl{\"a}che konzentrierte. Die Ergebnisse wurden mit Zelladh{\"a}sionskinetiken verglichen. Der dritte Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellul{\"a}rmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde {\"u}ber Zucker-Lektin Anbindung pr{\"a}sentiert und Zellverhalten auf diesen biomimetischen Oberfl{\"a}chen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberfl{\"a}chenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit 'Wie viel?', d.h. einerseits die Ermittlung der maximalen, als auch der f{\"u}r Zelladh{\"a}sion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine S{\"a}ttigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verh{\"a}ltnis 2/1 als maximales verwendetes Verh{\"a}ltnis. H{\"o}here Liganden zu Prepolymer Verh{\"a}ltnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gef{\"a}hrden. Zur Detektion mittels R{\"o}ntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekund{\"a}rionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminos{\"a}ure und ein iodiertes Peptid mit den Prepolymeren in molaren Verh{\"a}ltnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verh{\"a}ltnissen von 1/1. Zus{\"a}tzliche Liganden (2/1) f{\"u}hrten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfl{\"a}che, die f{\"u}r Zellen zug{\"a}nglich ist, durchzuf{\"u}hren. Im zweiten Teil dieser Arbeit (Oberfl{\"a}chensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfl{\"a}che quantifizierten. Zur Detektion mit Oberfl{\"a}chenplasmon-resonanz (SPR) und akustischer Oberfl{\"a}chenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberfl{\"a}chen {\"u}bertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine d{\"u}nne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabh{\"a}ngige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolek{\"u}l Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberfl{\"a}chen wurde eine maximale Peptidkonzentration auf der Oberfl{\"a}che bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachl{\"a}ssigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Z{\"a}hlen adh{\"a}renter prim{\"a}rer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladh{\"a}sion bei dem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 festgestellt. Hingegen wurde ein Verh{\"a}ltnis von 1/2 f{\"u}r optimale Zelladh{\"a}sion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgel{\"o}st und im CASY® Zellz{\"a}hler quantifiziert wurden. Zus{\"a}tzlich wurde die Zellvitalit{\"a}t durch Messung intrazellul{\"a}rer Enzymaktivit{\"a}ten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalit{\"a}t und GRGDS Konzentration hergestellt werden. Adh{\"a}rente HDFs waren in allen F{\"a}llen vital, unabh{\"a}ngig von der Ligandenkonzentration auf der Oberfl{\"a}che. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verh{\"a}ltnissen durch Z{\"a}hlen adh{\"a}renter Zellen auf Mikroskopbildern untersucht. Diese im Verh{\"a}ltnis zu HDFs wesentlich kleineren Mauszellen ben{\"o}tigten h{\"o}here GRGDS Konzentrationen (2/1) f{\"u}r maximale Zelladh{\"a}sion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. W{\"a}hrend die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberfl{\"a}chensensitive Quantifizierung mittels ELISA und Zelladh{\"a}sion, die lediglich die sterisch zug{\"a}nglichen Liganden auf einer Oberfl{\"a}che nachweisen, ergaben {\"u}bereinstimmend eine optimale Ligandenkonzentration f{\"u}r SA Bindung und Zelladh{\"a}sion bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberfl{\"a}chensensitiven Methoden ist. Der dritten Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellul{\"a}ren Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum gr{\"o}ßten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestm{\"o}gliche Nachahmung ist Voraussetzung f{\"u}r eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine M{\"o}glichkeit aufgezeigt, das ECM Protein FN nicht-kovalent {\"u}ber Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzf{\"a}rbung elegant nachgewiesen werden. Optimale Konzentrationen f{\"u}r den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adh{\"a}sion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberfl{\"a}chen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adh{\"a}rieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch {\"u}ber polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberfl{\"a}chen schien eine Umorganisation durch die Zellen m{\"o}glich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Pr{\"a}sentation eines Proteins erwies sich als vielversprechende M{\"o}glichkeit eine biomimetischere Oberfl{\"a}che f{\"u}r Zellen zu schaffen, die eine optimale Biokompatibilit{\"a}t erm{\"o}glichen k{\"o}nnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM pr{\"a}sentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultrad{\"u}nnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2\% reduziert, die Adh{\"a}sion von HDFs verhindert und die Adh{\"a}sion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinl{\"o}sung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen erm{\"o}glichten, Um die spezifische Zelladh{\"a}sion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfl{\"a}che gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerl{\"o}sung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfl{\"a}che gebunden, welche durch Zellen nicht erkannt wird. W{\"a}hrend die Verhinderung unspezifischer Proteinadsorption f{\"u}r die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adh{\"a}rieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zus{\"a}tzlich konnten MSCs auf GRGDS funktionalisierten Fasern adh{\"a}rieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberfl{\"a}chen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ans{\"a}tze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adh{\"a}sion.}, subject = {Hydrogel}, language = {en} } @phdthesis{Schmidt2011, author = {Schmidt, Ralf}, title = {Hamilton-Receptor-Mediated Self-Assembly of Merocyanine Dyes into Supramolecular Polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Selbstorganisation von Merocyaninfarbstoffen zu supramolekularen Polymeren wurde untersucht. Dabei konnte die Anordnung der hoch dipolaren Farbstoffe durch die Verwendung von verschiedenen Kombinationen von Wasserstoffbr{\"u}ckenbindungsmotiven und dipolarer Aggregation der Chromophore gesteuert.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Buerckstuemmer2011, author = {B{\"u}rckst{\"u}mmer, Hannah}, title = {Merocyanine dyes for solution-processed organic bulk heterojunction solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66879}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The technology of organic photovoltaics offers the possibility of low-cost devices due to easy fabrication procedures and low material consumption and at the same time high flexibility concerning the applied substrates or design features such as the color palette. Owing to these benefits, this research field is highly active, being reflected by the continuously rising number of publications. Chapter 1 gives an extensive overview of a part of these reports, namely the field of solution-processed BHJ organic solar cells using small molecules as electron-donating materials. In the early years of this research area (2006-2008), well known hole transporting materials such as triphenylamine based chromophores, oligothiophenes and polyaromatic hydrocarbons were applied. However, many of these dyes lacked absorption at longer wavelengths and were therefore limited in their light harvesting qualities. Later, chromophores based on low band gap systems consisting of electron-donating and electron-accepting units showing internal charge transfer overcame this handicap. Today, donor-substituted diketopyrrolopyrroles (D-A-D chromophores), squaraines (D-A-D chromophores) and acceptor substituted oligothiophenes (A-D-A chromophores) are among the most promising dyes for small molecule based organic solar cells with PCEs of 4-5\%. This work is based on the findings of the groups of W{\"u}rthner and Meerholz, which tested merocyanine dyes for the first time in organic BHJ solar cells.4 According to the B{\"a}ssler theory85, the high dipolarity of these dyes should hamper the charge transport, but the obtained first results with PCE of 1.7\% proved the potenital of this class of dyes for this application. Merocyanine dyes offer the advantages of facile synthesis and purification, high tinctorial strength and monodispersity. Additionally, the electronic structure of the dyes, namely the absorption as well as the electrochemical properties, can be adjusted by using the right combination of donor and acceptor units. For these reasons, this class of dye is highly interesting for the application in organic solar cells. It was the aim of the thesis to build more knowledge about the potential and limitations of merocyanines in BHJ photovoltaic devices. By screening a variety of donor and acceptor groups a comprehensive data set both for the molecular materials as well as for the respective solar devices was generated and analyzed. As one focus, the arrangement of the chromophores in the solid state was investigated to gain insight about the packing in the solar cells and its relevance for the performance of the latter. To do so, X-ray single crystal analyses were performed for selected molecules. By means of correlations between molecular properties and the characteristics of the corresponding solar cells, several design rules to generate efficient chromophores for organic photovoltaics were developed. The different donor and acceptor moieties applied in this work are depicted in the following ...}, subject = {organische Solarzelle}, language = {en} } @phdthesis{Mueller2011, author = {M{\"u}ller, Christian}, title = {Physical Properties of Chromophore Functionalized Gold Nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57657}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {n this work the synthesis and analysis of chromophore functionalized spherical gold nanoparticles is presented. The optical, electrochemical and spectroelectrochemical properties of these hybrid materials are furthermore studied. The work therefore is divided into two parts. The first part deals with triarylamine and PCTM-radical functionalized gold nanoparticles. The focus thereby was on the synthesis and on the investigations of chromophore-chromophore interactions and gold core-chromophore interactions. The chromopores, especially triarylamines, were attached to the gold core via different bridging units and were studied with optical and electrochemical methods. The purity and dimensions of the nanoparticles was determined by 1H-NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), TGA, XPS and STEM. Furthermore a cyclic voltammetry technique was used to determine the composition of the particles via the Randles-Sevcik equation. An analysis of these parameters led to a model of a sea urchin-shaped nanoparticle. Optical measurements of the particles revealed an anisotropic absorption behavior of the triarylamine units due to gold core-chromophore interaction. However this behavior depends strongly on the relative orientation of the transition dipole moment of the chromophore to the gold surface and the distance of the chromophore to the surface. Hence, the anisotropic behavior was exclusively detected in the spectra of the Au-Tara1 particles. The short and rigid pi-conjugated bridging unit thereby facilitates this gold core-chromophore interaction. It was shown from electrochemical investigations that the triarylamine units can be chemically reversibly oxidized to the triarylamine monoradical cation. Furthermore, the measurements revealed a strong interligand triarylamine-triarylamine interaction which was only seen for the Au-Tara1 particles. The long pi-conjugated bridging units of the Au-Tara2 and Au-Tara3 particles as well as the aliphatic bridging unit of Au-Tara4 prevent any detectable interligand interactions. One may conclude that both the gold core-chromophore and the interligand triarylamine-triarylamine interaction depend on the length and the rigidity of the bridging unit. The electron transfer behavior of the triarylamine units adsorbed onto the gold core was additionally studied via spectroelectrochemical (SEC) measurements which are able to reveal weaker interactions. The investigations of Au-Tara1 and Au-Tara2 revealed a significant strong coupling between neighboring triarylamine units which is due to through-space intervalence interactions. This behavior was not detected for Au-Tara3 or for Au-Tara4. The SEC analysis also revealed that these observed interligand interactions depend on the length and the rigidity of the bridging unit. Thus, the systematic variation of the bridging unit gave a basic insight in the optical and electrochemical properties of triarylamines, located in the vicinity of a gold nanoparticle. The second part of this work aimed at the synthesis of new molecules, denoted as SERS-markers, for immuno SERS applications. For this purpose, the SERS-markers were designed to have a Raman-active unit and a thiol group for chemisorptions to Au/Ag nanoshells. In cooperation with the group of Schl{\"u}cker (University of Osnabr{\"u}ck) the SERS-markers were absorbed onto Au/Ag nanoshells, denoted as SERS-labels, and characterized. The SERS spectra of the SERS-labels exhibited intense and characteristic SERS-signals for each marker. For immuno SERS investigations SEMA3 was functionalized with a hydrophilic end unit. This marker was adsorbed onto an Au/Ag nanoshell and encapsulated with silica. An anti-p63 antibody was bound to the silica surface in order to generate a SERS-labeled antibody for the detection of the tumor suppressor p63 in benign prostate. Immuno-SERS imaging of prostate tissue incubated with SERS-labeled anti-p63 antibodies demonstrated the selective detection of p63 in the basal epithelium. The results show the potential of the method for the detection of several biomolecules in a multiplexing SERS experiment.}, subject = {Gold}, language = {en} } @phdthesis{Sengupta2011, author = {Sengupta, Sanchita}, title = {Bio-inspired Zinc Chlorin Dye Assemblies for Supramolecular Electronics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66935}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Chlorophylls are the most important pigments owing to their involvement in photosynthesis. They perform multiple functions that arise due to their optical and redox as well as packing properties. Semisynthetic zinc chlorins investigated in this thesis are the counterparts for the natural protein-free bacteriochlorophyll (BChl) c assemblies in light-harvesting (LH) systems in bacterial chlorosomes. The major advantage of the zinc chlorin model compounds over the native BChls lies in their facile semisynthetic accessibility from chlorophyll a (Chl a), their higher chemical stability and the possibility to influence their packing by suitable chemical modifications of peripheral side chains. Whilst the favorable excitonic properties and the suitability of ZnChl and natural BChl c dye aggregates for long distance exciton transport are well documented, charge transport properties of aggregates of semisynthetic ZnChls are hitherto unexplored. The present study involves structural elucidations of aggregates of a variety of semisynthetic zinc chlorin derivatives in solution, in solid state and on surfaces by combination of spectroscopic, crystallographic and microscopic techniques, followed by investigation of charge transport properties and conductivities of these aggregates. Chart 1 shows the different ZnChls synthesized in this work that are functionalized with hydroxy or methoxy substituents at 31 position and contain different substituents at the 172-position benzyl ester functional group. The self-assembly of these dyes is strongly dependent upon their chemical structures. While ZnChls 1a, 2a, 3, which are functionalized with 31-hydroxy group bearing dodecyl and oligoethylene glycol side chains form well-soluble rod aggregates, the corresponding 31-methoxy functionalized counterparts 1b, 2b form stacks in solution and on surfaces. These supramolecular polymers have been studied in detail in Chapter 3 by UV/Vis and circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). These studies provided useful insights into the aggregation process of these two types of aggregates. Whereas 31-hydroxy functionalized ZnChl 1a self-assemble into rod aggregates via an isodesmic mechanism, corresponding stack aggregates of ZnChl 1b are formed by a cooperative nucleation-elongation pathway. Detailed electron microscopic studies such as transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) provided unequivocal evidence for hollow tubular nanostructures of water-soluble 31-hydroxy zinc chlorin 3 aggregates for the first time. The measured tube diameter of ~ 5-6 nm of these aggregates is in excellent agreement with electron microscopy data of BChl c rod aggregates in chlorosomes (Chloroflexus aurantiacus, diameter ~ 5-6 nm) and thus complied with the tubular model postulated by Holzwarth and Schaffner... In concord with their highly organized structures, micrometer-scale one dimensionality, robust nature and efficient charge transport capabilities, these self-assembled ZnChl nanotubular, stack and liquid crystalline assemblies are highly promising for supramolecular electronic applications. Research efforts in utilizing these assemblies for (opto)electronic device fabrication, for instance, in organic field effect transistors, should thus be rewarding in the future...}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Reitzenstein2010, author = {Reitzenstein, D{\"o}rte}, title = {Donor-Acceptor Conjugated Polymers for Application in Organic Electronic Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53939}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In the first part of the work three polycarbazoles poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-2,7-diyl P1, poly[N-((4-dimesitylboryl)-3,5-dimethylphenyl)-carbazole]-3,6-diyl P2 and poly[N-(4-(diphenylmethylene)-phenyl)- carbazole]-2,7-diyl P3 were synthesized by Yamamoto coupling reaction and their spectroscopic and electrochemical properties were investigated. Absorption and fluorescence characteristics of P1 and P3 were found to be similar to other 2,7-linked polycarbazoles, whereas P2 shows a CT absorption band arising from a shift of electron density from the nitrogen of the carbazole donor to the triarylborane acceptor. This causes a negative solvatochromic absorption and a positive solvatochromic fluorescence behaviour and is responsible for the significantly enlarged fluorescence quantum efficiency in solution and solid state compared to other 3,6-linked polycarbazoles. Thus the spectroscopic properties are governed by the connection pattern: the 2,7-linked polycarbazoles are not affected by the acceptor substituent due to the rigid poly-para-phenylene-like backbone structure, whereas the 3,6-linked polycarbazole P2 is dominated by the properties of the monomer unit due to its more flexible (less conjugated) structure. The oxidative processes of P1-P3 have been investigated in detail by cyclic voltammetry, which are similar to known 2,7- and 3,6-polycarbazoles. The reversible reduction found for P1 and P2, respectively, is attributed to the reduction of the triarylborane moiety. No reduction process referring to the carbazole moiety was observed. Due to its better solubility compared to P1 and P3 only P2 was used as active layer in an OLED device (ITO/P2/Al). The electroluminescence spectrum revealed CIE coordinates of (0.17, 0.21). In the second part of the work the low band gap polyradical poly{[((2,3,4,5,6-pentachlorophenyl)-bis(2,3,5,6-tetrachlorophenyl)methyl radical)-4,4'-diyl]-alt-4,4'-bis(vinylphenyl)-4-(2-ethylhexyloxy)phenylamin} P4 was synthesized by Horner-Emmons reaction. It shows an IV-CT band in the NIR, which arises from an ET from the triarylamine donor to the PCTM radical acceptor. This transition is confined to one monomer unit as deduced from comparison with the monomer spectra. HOMO and LUMO of P4 determined by cyclic voltammetry are at -5.5 and -4.5 eV, respectively. The smaller electrochemical band gap (1.0 eV) compared to the optical band gap (1.2 eV) is probably caused by ion pairing effects in the electrochemical experiments and indicates a low exciton binding energy. Femtosecond-pump-probe transient absorption spectroscopy revealed the spectral features of the oxidized triarylamine donor and the reduced PCTM acceptor similar to the spectra obtained separately for positive and negative potentials by spectroelectrochemistry. Thus the ET event causing the IV-CT absorption band could unambiguously be identified. The decay of the IV-CT state was found to be biexponential. The fast solvent dependent decay component is ascribed to the direct decay from the IV-CT state to the ground state, whereas the slow solvent independent decay component is tentatively attributed to an equilibrium formation of the IV-CT state and a completely charge separated state formed by charge migration along the polymer backbone. Well balanced ambipolar charge transport with hole and electron mobilities of ca. 3 × 10-5 cm2 V-1 s-1 was found in OFET devices (BG/TC structure) comprising an additional insulating organic PPcB layer. Polymer/polymer BHJ solar cell devices with the structure glass/ITO/PEDOT:PSS/(P3HT/P4)/Ca/Al yielded a power conversion efficiency of 3.1 × 10-3 \%, VOC = 0.38 V, JSC = 2.8 × 10-2 mA cm-2 and FF = 0.29 for the 1:4 (P3HT/P4) blend ratio. The improper solid state morphology of P4 that causes the unsatisfying performance of OFET and solar cell devices renders P4 less suitable for these applications, whereas the hypothesis of charge migration in the excited state is worth to be investigated in more detail.}, subject = {Carbazolderivate}, language = {en} } @phdthesis{Maksimenka2010, author = {Maksimenka, Katsiaryna}, title = {Absolute Configuration by Circular Dichroism: Quantum Chemical CD Calculations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Quantum chemical calculations of circular dichroism (CD) spectra in combination with experimental CD studies are one of the most efficient analytical tools for the elucidation of the three-dimensional structure of a chiral molecule. In the present work 18 chiral compounds of most different molecular structures and origins were investigated using various theoretical methods (the semiempirical CIS methods, the time-dependent DFT and DFT/MRCI approaches). The advantages and limitations of the applied methods were discussed in the context of the studied compounds. Furthermore, the last part of this work deals with the CD investigations of a chiral compound in the crystalline state. A well-known natural product with a specific conformation/CD spectrum behavior was used as a model compound to examine a novel solid-state CD method and to investigate the possibility of its improvement to provide a higher reliability for the assignment of the absolute configuration.}, subject = {Circular-Dichroismus}, language = {en} } @phdthesis{Abdelmohsen2010, author = {Abdelmohsen, Usama Ramadan}, title = {Antimicrobial Activities from Plant Cell Cultures and Marine Sponge-Associated Actinomycetes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis is divided into three parts with the main goal allocating novel antimicrobial compounds that could be used as future antibiotics. The first part aimed to evaluate the potential of plant suspension cultures for the production of antimicrobial proteins. The extracellular, intracellular and cell wall bound fractions of seven heterotrophic and photomixotrophic plant cell suspension cultures treated with nine different elicitors were tested for the elicitor dependent production of antimicrobial proteins. Bioactivities were tested against a selected panel of human isolates including Gram-positive and Gram-negative bacteria as well as fungi using the disc diffusion assay. The intracellular fractions of elicited cell cultures were more active than extracellular fractions while the cell wall bound fractions showed lowest activities. Among the 21 fractions tested, the intracellular fraction of Lavendula angustifolia elicited with DC3000 was most active against Candida maltosa. The second most active fraction was the intracellular fraction of Arabidopsis thaliana elicited with salicylic acid which was moreover active against all test strains. The antimicrobial activity of elicited Arabidopsis thaliana cell cultures was tested by bioautography to locate the antimicrobial proteins in the crude extract. The intracellular fraction of photomixotrophic Arabidopsis thaliana cells elicited with salicylic acid was selected for further gel filtration chromatography on S-200 column leading to the purification of one 19 kDa antimicrobially active protein, designated, AtAMP. Our findings suggest that elicited plant cell cultures may present a new promising alternative source of antimicrobial proteins. The second part comprises the isolation of actinomycetes associated with marine sponges and testing the bioactivities of new species for further investigations. Actinobacterial communities of eleven taxonomically different sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia) were investigated by a culture-based approach using different standard media for isolation of actinomycetes and media enriched with aqueous sponge extract to target rare and new actinomycete species. Phylogenetic characterization of 52 representative isolates out of 90 based on almost complete sequences of genes encoding 16S rRNA supported their assignment to 18 different actinomycete genera. Altogether 14 putatively new species were identified based on sequence similarity values below 98.2\% to other strains in the NCBI database. The use of M1 agar amended with aqueous sponge extract yielded a putative new genus related to Rubrobacter which highlighting the need for innovative cultivation protocols. Biological activity testing showed that five isolates were active against Gram-positives only, one isolate was active against Candida albicans only and one isolate showed activity against both groups of pathogens. Moreover, the antiparasistic activity was documented for four isolates. These results showed a high diversity of actinomycetes associated with marine sponges as well as highlighted their potential to produce anti-infective agents. The third part of the thesis focused on the isolation and structure elucidation of new bioactive compounds. Streptomyces strain RV15 recovered from sponge Dysidea tupha, was selected for further chemical analysis by virtue of the fact that it exhibited the greatest antimicrobial potential against Staphylococcus aureus as well as Candida albicans among the all tested strains. Moreover, members of the genus Streptomyces are well known as prolific producers of interesting pharmacologically active metabolites. Chemical analysis of the methanolic crude extract using different chromatographic tools yielded four new compounds. The structures of the new compounds were spectroscopically elucidated to be four new cyclic peptides, namely, cyclodysidins A-D. Their bioactivity was tested against different proteases, bacteria and Candida as well as tumor cell lines. The compounds did not show any significant activities at this point.}, subject = {Antimikrobieller Wirkstoff}, language = {en} } @phdthesis{Dehm2010, author = {Dehm, Volker Christoph}, title = {Synthesis and Characterization of an Oligo(Phenylene Ethynylene)-Based Perylene Bisimide Foldamer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53211}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The present work is part of the currently only rudimentary understanding of the structure-property relationships in the self-assembly of pi-conjugated organic molecules. Such structures may reveal favorable photophysical and semiconducting properties due to the weak non-covalent pi-pi interactions between the monomer units. The specific mutual orientation of the dyes is known to evoke individual functional properties for the condensed matter, however, the related electronic processes are still not well-understood and further enhancements of functional properties are seldom triggered by rational design. The pi-pi self-assembly structures of perylene bisimide (PBI) dyes are promising, versatile materials for organic electronic devices and have been elected for this thesis as an archetype aggregate system to investigate the dye-dye interactions in more detail. In cooperation with experts in the field of spectroscopy and theory the development of reliable routines towards a better understanding of the origins of the functional properties may be feasible, and, on a longer time-line, such knowledge may enable optimization of functional organic materials. Having designed such structures entailed the challenge of developing feasible synthesis strategies, and to actually generate the targeted molecules by synthesis. Several synthesis approaches were conducted until finally a perylene bisimide foldamer was obtained based on a Sonogashira co-polymerization reaction. After purification and enrichment of the larger-sized species by means of semi-preparative gel permeation chromatography (GPC) the average size of an octamer (8500 Da) species was determined by analytical GPC. The low polydispersity index (PD) of 1.1 is indicative of a sharp size distribution of the oligomers. This average size was confirmed by performing diffusion ordered NMR spectroscopy (DOSY). Furthermore, MALDI-TOF mass analysis substantiated the structural integrity of the co-polymerization product. Solvent-dependent UV/vis spectroscopic investigations demonstrated that intramolecular PBI  aggregates are reversibly formed, indicating that this oligomer is able to fold and unfold in the intended manner upon changing external conditions. In the unfolded states, the PBI moieties are closely arranged due to the short OPE bridges (< 2.4 nm), which is expressed by an exciton coupling interaction of the dyes and therefore the characteristic monomer absorption pattern of the PBI chromophore cannot be obtained in the unfolded states. More interestingly, the folded state revealed a pronounced aggregate spectrum of the PBIs, however, striking differences in the shape of the absorption spectrum compared to our previously investigated PBI self-assembly were obtained.}, subject = {Perylenbisdicarboximide pi* transition in the thiohydroxamic acid functionality. In chapter 5 the mechanism of the thermally and the photochemically induced N,O homolysis in both compounds is unveiled. The near UV-induced N,O homolysis will start from the S2 state. The expected relaxation from the S2- to the S1-state and the dissociation process is expected to be very fast in the case of the thiazolethione compound. The potential surfaces of the pyridine compound in contrast point to a slower N,O bond dissociation. Due to the resulting faster dissociation process the excess energy which results from the photochemical activation is quenched only to small amounts. The maximal possible excess energy of the fragments is lower and a quenching is much more likely in the case of the pyridinethione compounds. This explaines the different reactivities of both compounds. For the also already successfully applied precursor system N-(alkoxy)-pyridineones the computed dissociation paths show courses that clearly predict a slow bond dissociation process. Chapter 6 deals with the tuning of the initial excitation wave length of the known pyridinethiones und thiazolethiones. In the first part the effects of substituents on the thiazolethione heterocycle was examined. The UV/vis spectra of 4 and 5 substituted thiazolethiones can be interpreted like the spectrum of the parent compound. The second part of chapter 6 deals with the identification of a substitution pattern on the pyridine heterocycle which induces a blue shift of the photo active band. The computations showed that electron rich and electron poor substituents result the same effects on the electronic excitation spectra. These substituent effects are additive, but the steric orientation of the substituents has to be taken into account. Chapter 7 describes a computer aided design of new alkoxyl radical precursors. Combining the advantages of both compounds the radical formation should be initiated by an irradiation with light at about 350 nm, and the amount of side products during the radical formation process should be small. To achieve this 18 test candidates were obtained by a systematic variation of the parent compound of the thiazolethione precursor. To identify the promising new precursor systems a screening of the lower electronic excitations of all resulting 18 systems was performed with TD-DFT. For promising systems the N,O or P,O dissociation paths, respectively, were analyzed according to the developed model. N-(methoxy)-azaphospholethione and N-(methoxy)-pyrrolethione seem to be the most promising candidates. The computations predict a strong absorption at about 350 nm respectively 320 nm. Due to the amounts of maximal excess energy and the shapes of the potential surfaces of the N,O bond dissociation paths their reactivity should resemble more the behavior of the pyridinethiones.}, language = {en} }