@article{DostalFennelKochetal.2018, author = {Dost{\´a}l, Jakub and Fennel, Franziska and Koch, Federico and Herbst, Stefanie and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Direct observation of exciton-exciton interactions}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04884-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226271}, year = {2018}, abstract = {Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton-exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio-temporal dynamics for a broad range of phenomena in which exciton interactions are present.}, language = {en} } @article{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, volume = {150}, journal = {Journal of Physical Chemistry Letters}, number = {10}, doi = {10.1063/1.5086151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178420}, pages = {104304}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} } @unpublished{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178482}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} }