@phdthesis{Draeger2020, author = {Draeger, Simon}, title = {Rapid Two-Dimensional One-Quantum and Two-Quantum Fluorescence Spectroscopy}, doi = {10.25972/OPUS-19816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In den letzten zwei Jahrzehnten hat sich die koh{\"a}rente mehrdimensionale Femtosekunden- Spektroskopie zu einem leistungsstarken und vielseitigen Instrument zur Untersuchung der chemischen Dynamik einer Vielzahl von Quantensystemen entwickelt. Die Kombination von transienten Informationen, die der Anrege-Abrage-Spektroskopie entsprechen, mit Informationen zur Kopplung zwischen energetischen Zust{\"a}nden und der Systemumgebung erm{\"o}glicht einen umfassenden Einblick in atomare und molekulare Eigenschaften. Viele experimentelle 2D-Aufbauten verwenden den koh{\"a}renzdetektierten Ansatz, bei dem nichtlineare Systemantworten als koh{\"a}rente elektrische Felder emittiert und r{\"a}umlich getrennt von den Anregungspulsen detektiert werden. Als Alternative zu diesem experimentell anspruchsvollen Ansatz wurde die populationsbasierte 2D-Spektroskopie etabliert. Hier wird die koh{\"a}rente Information in den Phasen einer kollinearen Anregungspulsfolge codiert und aus inkoh{\"a}renten Signalen wie Fluoreszenz {\"u}ber Phase Cycling extrahiert. Grunds{\"a}tzlich kann durch die Verwendung von Fluoreszenz als Observable eine Sensitivit{\"a}t bis zum Einzelmolek{\"u}lniveau erreicht werden. Ziel dieser Arbeit war die Realisierung eines pulsformergest{\"u}tzten vollst{\"a}ndig kollinearen fluoreszenzdetektierten 2D-Aufbaus und die Durchf{\"u}hrung von Proof-of- Principle-Experimenten in der Fl{\"u}ssigphase. Dieser inh{\"a}rent phasenstabile und kompakte Aufbau wurde in Kapitel 3 vorgestellt. Der verwendete Pulsformer erm{\"o}glicht eine Amplituden- und Phasenmodulation von Schuss zu Schuss. Zwei verschiedene Arten von Weißlichtquellen wurden angewendet und hinsichtlich ihrer jeweiligen Vorteile f{\"u}r die 2D-Fluoreszenzspektroskopie bewertet. Eine Vielzahl von Artefaktquellen, die mit dem vorliegenden Aufbau auftreten k{\"o}nnen, wurden diskutiert und Korrekturschemata und Anweisungen zur Vermeidung dieser Artefakte bereitgestellt. In Kapitel 4 wurde der Aufbau anhand einer Vierpulssequenz mit Cresylviolett in Ethanol demonstriert. Es wurde ein detailliertes Datenerfassungs- und Datenanalyseverfahren vorgestellt, bei dem Phase Cycling zur Extraktion der nichtlinearen Beitr{\"a}ge verwendet wird. Abh{\"a}ngig vom Phase Cycling-Schema ist es m{\"o}glich, alle nichtlinearen Beitr{\"a}ge in einer einzigen Messung aufzudecken. Literaturbekannte Oszillationen von Cresylviolett w{\"a}hrend der Populationszeit konnten reproduziert werden. Aufgrund der Messung in einer Umgebung im Rotating Frame und einer 1 kHz Schuss-zu-Schuss Pulsinkrementierung war es m{\"o}glich, ein 2D-Spektrum f{\"u}r eine Populationszeit in 6 s zu erhalten. Eine Fehlerevaluierung hat gezeigt, dass eine zehnfache Mittelwertbildung (1 min) ausreicht, um eine mittlere quadratische Abweichung von < 0:05 gegen� uber einer 400-fachen Mittelwertbildung zu erhalten, was beweist, dass das verwendete Messschema gut geeignet ist. Die Realisierung des ersten experimentellen fluoreszenzdetektierten 2Q-2D-Experiments und der erste experimentelle Zugang zum theoretisch vorhergesagten 1Q-2Q-Beitrag wurden in Kapitel 5 vorgestellt. Zu diesem Zweck wurde eine Dreipulssequenz auf Cresylviolett in Ethanol angewendet und die experimentellen Ergebnisse wurden mit Simulationen eines einfachen Sechs-Level-Systems verglichen. Im Gegensatz zur koh{\"a}renzdetektierten 2Q-2D-Spektroskopie sind bei dem vorgestellten Aufbau keine nichtresonanten L{\"o}sungsmittelsignale und Streuungsbeitr{\"a}ge sichtbar und es ist kein zus{\"a}tzliches Phasing-Verfahren erforderlich. Durch eine Kombination aus Experimenten und systematischen Simulationen wurden Informationen {\"u}ber die Relaxation der L{\"o}sungsmittelh{\"u}lle und die Korrelationsenergie gewonnen. Auf der Basis von Simulationen wurden Effekte der Pfadausl{\"o}schung diskutiert, die darauf schließen lassen, dass die 1Q-2Q-2D-Spektroskopie m{\"o}glicherweise die quantitative Analyse f{\"u}r molekulare Systeme erleichtert, die eine starke nichtstrahlende Relaxation aus h{\"o}heren elektronischen Zust{\"a}nden aufweisen. Zusammenfassend ist es mit der vorgestellten Methode m{\"o}glich, alle nichtlinearen Beitr{\"a}ge mit einer schnellen Datenaufnahme und einem einfach einzurichtenden Aufbau zu erfassen. Die gezeigten Proof-of-Principle-Experimente stellen eine Erweiterung der 2D-Spektroskopie-Werkzeugpalette dar und bieten eine fundierte Grundlage f{\"u}r zuk{\"u}nftige Anwendungen wie mehrdimensionale Spektroskopie, mehrfarbige 2D-Spektroskopie oder die Kombination von simultanen Fl{\"u}ssig- und Gasphasen-2D-Experimenten.}, subject = {Fluoreszenzspektroskopie}, language = {en} } @unpublished{MuellerDraegerMaetal.2018, author = {M{\"u}ller, Stefan and Draeger, Simon and Ma, Kiaonan and Hensen, Matthias and Kenneweg, Tristan and Pfeiffer, Walter and Brixner, Tobias}, title = {Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, doi = {10.1021/acs.jpclett.8b00541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173468}, year = {2018}, abstract = {We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum-two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems.}, subject = {Fluoreszenz}, language = {en} }