@phdthesis{Laqua2024, author = {Laqua, Caroline}, title = {Association of myocardial tissue characteristics and functional outcome in biopsy-verified myocarditis assessed by cardiac magnetic resonance imaging}, doi = {10.25972/OPUS-36390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The relation between LV function and cardiac MRI tissue characteristics in separate myocardial segments and their change over time has yet to be explored in myocarditis. Thus, our research aimed to investigate possible associations between global and regional myocardial T1 and T2 times and peak strain in patients with suspected myocarditis. From 2012 to 2015, 129 patients with clinically suspected myocarditis of the prospective, observational MyoRacer-Trial underwent systematic biventricular EMB at baseline and cardiac MRI at baseline and after three months as a follow-up. We divided the LV myocardium into 17 segments and estimated the segmental myocardial strain using FT. We registered T1 and T2 maps to the cine sequences and transferred the segmentations used for FT to ensure conformity of the myocardial segments. Multi-level multivariable linear mixed effects regression was applied to investigate the relation of segmental myocardial strain to relaxation times and their respective change from baseline to follow-up. We found a significant improvement in myocardial peak strain from baseline to follow-up (p < 0.001; all p-values given for likelihood ratio tests) and significant associations between higher T1 and T2 times and lower segmental myocardial peak strain (p ranging from < 0.001 to 0.049). E.g., regression coefficient (Reg. coef.) for segmental radial peak strain in short axis view (SRPS_SAX) and T1 time: -1.9, 95\% CI (-2.6;-1.2) \%/100 ms, p < 0.001. A decrease in T1 and T2 times from baseline to follow-up was also significantly related to a recovery of segmental peak strains (p ranging from < 0.001 to 0.050). E.g., Reg. coef. for SRPS_SAX per ΔT1: -1.8, 95\% CI (-2.5;-1.0) \%/100 ms, p < 0.001. Moreover, the higher the baseline T1 time, the more substantial the functional recovery from baseline to follow-up (p ranging from 0.004 to 0.042, e.g., for SRPS_SAX: Reg. coef. 1.3, 95\% CI (0.4;2.1) \%/100 ms, p 0.004). We did not find an effect modification by the presence of myocarditis in the EMB (p > 0.1). Our cross-sectional and longitudinal analyses provide evidence of dose-dependent correlations between T1 and T2 relaxation times and myocardial peak strain in patients with clinical presentation of myocarditis, regardless of the EMB result. Thus, assessing strain values and mapping relaxation times helps estimate the functional prognosis in patients with clinically suspected myocarditis.}, subject = {Myokarditis}, language = {en} } @phdthesis{Panjwani2015, author = {Panjwani, Priyadarshini}, title = {Induction, Imaging, Histo-morphological and Molecular Characterization of Myocarditis in the Rat to Explore Novel Diagnostic Strategies for the Detection of Myocardial Inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122469}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Fulminant myocarditis is rare but a potentially life-threatening disease. Acute or mild myocarditis following acute ischemia is generally associated with a profound activation of the host's immune system. On one hand this is mandatory to protect the host's heart by fighting the invading agents (i.e., bacteria, viruses or other microbial agents) and/or to induce healing and repair processes in the damaged myocardium. On other hand, uncontrolled activation of the immune system may result in the generation of auto-reactive (not always beneficial) immune cells. Myocarditis or inflammatory cardiomyopathy is characterized by focal or diffuse infiltrates, myocyte necrosis and/or apoptosis and subsequent fibrotic replacement of the heart muscle. In humans, about 30\% of the myocarditis-patients develop dilated cardiomyopathy. As the clinical picture of myocarditis is multifaceted, it is difficult to diagnose the disease. Therefore, the main goal of the present work was to test and further develop novel non-invasive methods for the detection of myocardial inflammation by employing both contrast enhanced MRI techniques as well as novel nuclear tracers that are suitable for in vivo PET/ SPECT imaging. As a part of this thesis, a pre-clinical animal model was successfully established by immunizing female Lewis rats with whole-porcine cardiac myosin (CM). Induction of Experimental Autoimmune Myocarditis (EAM) is considered successful when anti-myosin antibody titers are increased more than 100-fold over control animals and pericardial effusion develops. In addition, cardiac tissues from EAM-rats versus controls were analyzed for the expression of various pro-inflammatory and fibrosis markers. To further exploit non-invasive MRI techniques for the detection of myocarditis, our EAM-rats were injected either with (1) ultra-small Paramagnetic iron oxide particles (USPIO's; Feraheme®), allowing for in vivo imaging , (2) micron sized paramagnetic iron oxide particles (MPIO) for ex vivo inflammatory cell-tracking by cMRI, or (3) with different radioactive nuclear tracers (67gallium citrate, 68gallium-labeled somatostatin analogue, and 68gallium-labeled cyclic RGD-peptide) which in the present work have been employed for autoradiographic imaging, but in principle are also suitable for in vivo nuclear imaging (PET/SPECT). In order to compare imaging results with histology, consecutive heart sections were stained with hematoxylin \& eosin (HE, for cell infiltrates) and Masson Goldner trichrome (MGT, for fibrosis); in addition, immuno-stainings were performed with anti-CD68 (macrophages), anti-SSRT2A (somatostatin receptor type 2A), anti-CD61 (β3-integrins) and anti-CD31 (platelet endothelial cell adhesion molecule 1). Sera from immunized rats strongly reacted with cardiac myosin. In immunized rats, echocardiography and subsequent MRI revealed huge amounts of pericardial effusion (days 18-21). Analysis of the kinetics of myocardial infiltrates revealed maximal macrophage invasion between days 14 and 28. Disappearance of macrophages resulted in replacement-fibrosis in formerly cell-infiltrated myocardial areas. This finding was confirmed by the time-dependent differential expression of corresponding cytokines in the myocardium. Immunized animals reacted either with an early or a late pattern of post-inflammation fibrosis. Areas with massive cellular infiltrates were easily detectible in autoradiograms showing a high focal uptake of 67gallium-citrate and 68gallium labeled somatostatin analogues (68Ga DOTA-TATE). Myocardium with a loss of cardiomyocytes presented a high uptake of 68gallium labeled cyclic RGD-peptide (68Ga NOTA-RGD). MRI cell tracking experiments with Feraheme® as the contrast-agent were inconclusive; however, strikingly better results were obtained when MPIOs were used as a contrast-agent: histological findings correlated well with in vivo and ex vivo MPIO-enhanced MRI images. Imaging of myocardial inflammatory processes including the kinetics of macrophage invasion after microbial or ischemic damage is still a major challenge in, both animal models and in human patients. By applying a broad panel of biochemical, histological, molecular and imaging methods, we show here that different patterns of reactivity may occur upon induction of myocarditis using one and the same rat strain. In particular, immunized Lewis rats may react either with an early or a late pattern of macrophage invasion and subsequent post-inflammation fibrosis. Imaging results achieved in the acute inflammatory phase of the myocarditis with MPIOs, 67gallium citrate and 68gallium linked to somatostatin will stimulate further development of contrast agents and radioactive-nuclear tracers for the non-invasive detection of acute myocarditis and in the near future perhaps even in human patients.}, subject = {Ratte}, language = {en} } @article{WernerWakabayashiBaueretal.2018, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Bauer, Jochen and Sch{\"u}tz, Claudia and Zechmeister, Christina and Hayakawa, Nobuyuki and Javadi, Mehrbod S. and Lapa, Constantin and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis}, series = {European Heart Journal Cardiovascular Imaging}, journal = {European Heart Journal Cardiovascular Imaging}, issn = {2047-2404}, doi = {10.1093/ehjci/jey119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165601}, pages = {1-8}, year = {2018}, abstract = {Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.}, subject = {Myokarditis}, language = {en} } @inproceedings{WernerWakabayashiJahnsetal.2017, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {PET-Guided Histological Characterization of Myocardial Infiltrating Cells in a Rat Model of Myocarditis}, series = {European Heart Journal - Cardiovascular Imaging}, volume = {18}, booktitle = {European Heart Journal - Cardiovascular Imaging}, number = {Supplement}, publisher = {Oxford University Press}, issn = {2047-2404}, doi = {10.1093/ehjci/jex071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161127}, pages = {i1-i3}, year = {2017}, abstract = {No abstract available.}, subject = {Myokarditis}, language = {en} }