@masterthesis{Mutter2024, type = {Bachelor Thesis}, author = {Mutter, Julian}, title = {Modeling and simulation of a propulsive landing system with 3DOF}, doi = {10.25972/OPUS-36930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369306}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {77}, year = {2024}, abstract = {In this thesis, a model of the dynamics during the landing phase of an interplanetary lander mission is developed in a 3 DOF approach with the focus lying on landing by propulsive means. Based on this model, a MATLAB simulation was developed with the goal of enabling an estimation of the performance and especially the required fuel amount of a propulsive landing system on Venus. This landing system is modeled to be able to control its descent using thrusters and to perform a stable landing at a specified target location. Using this simulation, the planetary environments of Mars and Venus can be simulated and the impact of wind, atmospheric density and gravity as well as of using different thrusters on the fuel consumption and landing abilities of the simulated landing system can be investigated. The comparability of these results with the behavior of real landing systems is validated in this thesis by simulating the Powered Descent Phase of the Mars 2020 mission and comparing the results to the data the Mars 2020 descent stage has collected during this phase of its landing. Further, based on the simulation, the minimal necessary fuel amount for a successful landing on Venus has been determined for different scenarios. The simulation along with these results are a contribution to the research of this thesis's supervisor Clemens Riegler, M.Sc., who will use them for a comparison of different types of landing systems in the context of his doctoral thesis.}, subject = {Raumfahrt}, language = {en} } @article{SperlichDuekingLeppichetal.2023, author = {Sperlich, Billy and D{\"u}king, Peter and Leppich, Robert and Holmberg, Hans-Christer}, title = {Strengths, weaknesses, opportunities, and threats associated with the application of artificial intelligence in connection with sport research, coaching, and optimization of athletic performance: a brief SWOT analysis}, series = {Frontiers in Sports and Active Living}, volume = {5}, journal = {Frontiers in Sports and Active Living}, doi = {10.3389/fspor.2023.1258562}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357973}, year = {2023}, abstract = {Here, we performed a non-systematic analysis of the strength, weaknesses, opportunities, and threats (SWOT) associated with the application of artificial intelligence to sports research, coaching and optimization of athletic performance. The strength of AI with regards to applied sports research, coaching and athletic performance involve the automation of time-consuming tasks, processing and analysis of large amounts of data, and recognition of complex patterns and relationships. However, it is also essential to be aware of the weaknesses associated with the integration of AI into this field. For instance, it is imperative that the data employed to train the AI system be both diverse and complete, in addition to as unbiased as possible with respect to factors such as the gender, level of performance, and experience of an athlete. Other challenges include e.g., limited adaptability to novel situations and the cost and other resources required. Opportunities include the possibility to monitor athletes both long-term and in real-time, the potential discovery of novel indicators of performance, and prediction of risk for future injury. Leveraging these opportunities can transform athletic development and the practice of sports science in general. Threats include over-dependence on technology, less involvement of human expertise, risks with respect to data privacy, breaching of the integrity and manipulation of data, and resistance to adopting such new technology. Understanding and addressing these SWOT factors is essential for maximizing the benefits of AI while mitigating its risks, thereby paving the way for its successful integration into sport science research, coaching, and optimization of athletic performance.}, language = {en} } @misc{Werner2024, type = {Master Thesis}, author = {Werner, Lennart}, title = {Terrain Mapping for Autonomous Navigation of Lunar Rovers}, doi = {10.25972/OPUS-35826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358268}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Autonomous mobile robots operating in unknown terrain have to guide their drive decisions through local perception. Local mapping and traversability analysis is essential for safe rover operation and low level locomotion. This thesis deals with the challenge of building a local, robot centric map from ultra short baseline stereo imagery for height and traversability estimation. Several grid-based, incremental mapping algorithms are compared and evaluated in a multi size, multi resolution framework. A new, covariance based mapping update is introduced, which is capable of detecting sub- cellsize obstacles and abstracts the terrain of one cell as a first order surface. The presented mapping setup is capable of producing reliable ter- rain and traversability estimates under the conditions expected for the Cooperative Autonomous Distributed Robotic Exploreration (CADRE) mission. Algorithmic- and software architecture design targets high reliability and efficiency for meeting the tight constraints implied by CADRE's small on-board embedded CPU. Extensive evaluations are conducted to find possible edge-case scenar- ios in the operating envelope of the map and to confirm performance parameters. The research in this thesis targets the CADRE mission, but is applicable to any form of mobile robotics which require height- and traversability mapping.}, subject = {Mondfahrzeug}, language = {en} } @article{BayerPruckner2023, author = {Bayer, Daniel and Pruckner, Marco}, title = {A digital twin of a local energy system based on real smart meter data}, series = {Energy Informatics}, volume = {6}, journal = {Energy Informatics}, doi = {10.1186/s42162-023-00263-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357456}, year = {2023}, abstract = {The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data.}, language = {en} } @article{KrenzerHeilFittingetal., author = {Krenzer, Adrian and Heil, Stefan and Fitting, Daniel and Matti, Safa and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Automated classification of polyps using deep learning architectures and few-shot learning}, series = {BMC Medical Imaging}, volume = {23}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-023-01007-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357465}, abstract = {Background Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. Methods We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. Results For the Paris classification, we achieve an accuracy of 89.35 \%, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 \% and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. Conclusion Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.}, language = {en} } @article{RackFernandoYalcinetal.2023, author = {Rack, Christian and Fernando, Tamara and Yalcin, Murat and Hotho, Andreas and Latoschik, Marc Erich}, title = {Who is Alyx? A new behavioral biometric dataset for user identification in XR}, series = {Frontiers in Virtual Reality}, volume = {4}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2023.1272234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-353979}, year = {2023}, abstract = {Introduction: This paper addresses the need for reliable user identification in Extended Reality (XR), focusing on the scarcity of public datasets in this area. Methods: We present a new dataset collected from 71 users who played the game "Half-Life: Alyx" on an HTC Vive Pro for 45 min across two separate sessions. The dataset includes motion and eye-tracking data, along with physiological data from a subset of 31 users. Benchmark performance is established using two state-of-the-art deep learning architectures, Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). Results: The best model achieved a mean accuracy of 95\% for user identification within 2 min when trained on the first session and tested on the second. Discussion: The dataset is freely available and serves as a resource for future research in XR user identification, thereby addressing a significant gap in the field. Its release aims to facilitate advancements in user identification methods and promote reproducibility in XR research.}, language = {en} } @phdthesis{Drobczyk2024, author = {Drobczyk, Martin}, title = {Ultra-Wideband Wireless Network for Enhanced Intra-Spacecraft Communication}, doi = {10.25972/OPUS-35956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359564}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Wireless communication networks already comprise an integral part of both the private and industrial sectors and are successfully replacing existing wired networks. They enable the development of novel applications and offer greater flexibility and efficiency. Although some efforts are already underway in the aerospace sector to deploy wireless communication networks on board spacecraft, none of these projects have yet succeeded in replacing the hard-wired state-of-the-art architecture for intra-spacecraft communication. The advantages are evident as the reduction of the wiring harness saves time, mass, and costs, and makes the whole integration process more flexible. It also allows for easier scaling when interconnecting different systems. This dissertation deals with the design and implementation of a wireless network architecture to enhance intra-spacecraft communications by breaking with the state-of-the-art standards that have existed in the space industry for decades. The potential and benefits of this novel wireless network architecture are evaluated, an innovative design using ultra-wideband technology is presented. It is combined with a Medium Access Control (MAC) layer tailored for low-latency and deterministic networks supporting even mission-critical applications. As demonstrated by the Wireless Compose experiment on the International Space Station (ISS), this technology is not limited to communications but also enables novel positioning applications. To adress the technological challenges, extensive studies have been carried out on electromagnetic compatibility, space radiation, and data robustness. The architecture was evaluated from various perspectives and successfully demonstrated in space. Overall, this research highlights how a wireless network can improve and potentially replace existing state-of-the-art communication systems on board spacecraft in future missions. And it will help to adapt and ultimately accelerate the implementation of wireless networks in space systems.}, subject = {Raumfahrttechnik}, language = {en} } @phdthesis{Zink2024, author = {Zink, Johannes}, title = {Algorithms for Drawing Graphs and Polylines with Straight-Line Segments}, doi = {10.25972/OPUS-35475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Graphs provide a key means to model relationships between entities. They consist of vertices representing the entities, and edges representing relationships between pairs of entities. To make people conceive the structure of a graph, it is almost inevitable to visualize the graph. We call such a visualization a graph drawing. Moreover, we have a straight-line graph drawing if each vertex is represented as a point (or a small geometric object, e.g., a rectangle) and each edge is represented as a line segment between its two vertices. A polyline is a very simple straight-line graph drawing, where the vertices form a sequence according to which the vertices are connected by edges. An example of a polyline in practice is a GPS trajectory. The underlying road network, in turn, can be modeled as a graph. This book addresses problems that arise when working with straight-line graph drawings and polylines. In particular, we study algorithms for recognizing certain graphs representable with line segments, for generating straight-line graph drawings, and for abstracting polylines. In the first part, we first examine, how and in which time we can decide whether a given graph is a stick graph, that is, whether its vertices can be represented as vertical and horizontal line segments on a diagonal line, which intersect if and only if there is an edge between them. We then consider the visual complexity of graphs. Specifically, we investigate, for certain classes of graphs, how many line segments are necessary for any straight-line graph drawing, and whether three (or more) different slopes of the line segments are sufficient to draw all edges. Last, we study the question, how to assign (ordered) colors to the vertices of a graph with both directed and undirected edges such that no neighboring vertices get the same color and colors are ascending along directed edges. Here, the special property of the considered graph is that the vertices can be represented as intervals that overlap if and only if there is an edge between them. The latter problem is motivated by an application in automated drawing of cable plans with vertical and horizontal line segments, which we cover in the second part. We describe an algorithm that gets the abstract description of a cable plan as input, and generates a drawing that takes into account the special properties of these cable plans, like plugs and groups of wires. We then experimentally evaluate the quality of the resulting drawings. In the third part, we study the problem of abstracting (or simplifying) a single polyline and a bundle of polylines. In this problem, the objective is to remove as many vertices as possible from the given polyline(s) while keeping each resulting polyline sufficiently similar to its original course (according to a given similarity measure).}, subject = {Graphenzeichnen}, language = {en} } @article{HelmerRodemersHottenrottetal.2023, author = {Helmer, Philipp and Rodemers, Philipp and Hottenrott, Sebastian and Leppich, Robert and Helwich, Maja and Pryss, R{\"u}diger and Kranke, Peter and Meybohm, Patrick and Winkler, Bernd E. and Sammeth, Michael}, title = {Evaluating blood oxygen saturation measurements by popular fitness trackers in postoperative patients: a prospective clinical trial}, series = {iScience}, volume = {26}, journal = {iScience}, number = {11}, issn = {2589-0042}, doi = {10.1016/j.isci.2023.108155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349913}, year = {2023}, abstract = {Summary Blood oxygen saturation is an important clinical parameter, especially in postoperative hospitalized patients, monitored in clinical practice by arterial blood gas (ABG) and/or pulse oximetry that both are not suitable for a long-term continuous monitoring of patients during the entire hospital stay, or beyond. Technological advances developed recently for consumer-grade fitness trackers could—at least in theory—help to fill in this gap, but benchmarks on the applicability and accuracy of these technologies in hospitalized patients are currently lacking. We therefore conducted at the postanaesthesia care unit under controlled settings a prospective clinical trial with 201 patients, comparing in total >1,000 oxygen blood saturation measurements by fitness trackers of three brands with the ABG gold standard and with pulse oximetry. Our results suggest that, despite of an overall still tolerable measuring accuracy, comparatively high dropout rates severely limit the possibilities of employing fitness trackers, particularly during the immediate postoperative period of hospitalized patients. Highlights •The accuracy of O2 measurements by fitness trackers is tolerable (RMSE ≲4\%) •Correlation with arterial blood gas measurements is fair to moderate (PCC = [0.46; 0.64]) •Dropout rates of fitness trackers during O2 monitoring are high (∼1/3 values missing) •Fitness trackers cannot be recommended for O2 measuring during critical monitoring}, language = {en} } @article{HossfeldHeegaardKellerer2023, author = {Hossfeld, Tobias and Heegaard, Poul E. and Kellerer, Wolfgang}, title = {Comparing the scalability of communication networks and systems}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3314201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349403}, pages = {101474-101497}, year = {2023}, abstract = {Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.}, language = {en} } @article{MuellerLeppichGeissetal.2023, author = {M{\"u}ller, Konstantin and Leppich, Robert and Geiß, Christian and Borst, Vanessa and Pelizari, Patrick Aravena and Kounev, Samuel and Taubenb{\"o}ck, Hannes}, title = {Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery}, series = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, volume = {16}, journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, issn = {1939-1404}, doi = {10.1109/JSTARS.2023.3297710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349424}, pages = {8508-8519}, year = {2023}, abstract = {In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7\%.}, language = {en} } @article{LimanMayFetteetal.2023, author = {Liman, Leon and May, Bernd and Fette, Georg and Krebs, Jonathan and Puppe, Frank}, title = {Using a clinical data warehouse to calculate and present key metrics for the radiology department: implementation and performance evaluation}, series = {JMIR Medical Informatics}, volume = {11}, journal = {JMIR Medical Informatics}, issn = {2291-9694}, doi = {10.2196/41808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349411}, year = {2023}, abstract = {Background: Due to the importance of radiologic examinations, such as X-rays or computed tomography scans, for many clinical diagnoses, the optimal use of the radiology department is 1 of the primary goals of many hospitals. Objective: This study aims to calculate the key metrics of this use by creating a radiology data warehouse solution, where data from radiology information systems (RISs) can be imported and then queried using a query language as well as a graphical user interface (GUI). Methods: Using a simple configuration file, the developed system allowed for the processing of radiology data exported from any kind of RIS into a Microsoft Excel, comma-separated value (CSV), or JavaScript Object Notation (JSON) file. These data were then imported into a clinical data warehouse. Additional values based on the radiology data were calculated during this import process by implementing 1 of several provided interfaces. Afterward, the query language and GUI of the data warehouse were used to configure and calculate reports on these data. For the most common types of requested reports, a web interface was created to view their numbers as graphics. Results: The tool was successfully tested with the data of 4 different German hospitals from 2018 to 2021, with a total of 1,436,111 examinations. The user feedback was good, since all their queries could be answered if the available data were sufficient. The initial processing of the radiology data for using them with the clinical data warehouse took (depending on the amount of data provided by each hospital) between 7 minutes and 1 hour 11 minutes. Calculating 3 reports of different complexities on the data of each hospital was possible in 1-3 seconds for reports with up to 200 individual calculations and in up to 1.5 minutes for reports with up to 8200 individual calculations. Conclusions: A system was developed with the main advantage of being generic concerning the export of different RISs as well as concerning the configuration of queries for various reports. The queries could be configured easily using the GUI of the data warehouse, and their results could be exported into the standard formats Excel and CSV for further processing.}, language = {en} } @article{SeufertPoigneeSeufertetal.2023, author = {Seufert, Anika and Poign{\´e}e, Fabian and Seufert, Michael and Hoßfeld, Tobias}, title = {Share and multiply: modeling communication and generated traffic in private WhatsApp groups}, series = {IEEE Access}, volume = {11}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2023.3254913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349430}, pages = {25401-25414}, year = {2023}, abstract = {Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group.}, language = {en} } @techreport{HerrmannRizk2023, type = {Working Paper}, author = {Herrmann, Martin and Rizk, Amr}, title = {On Data Plane Multipath Scheduling for Connected Mobility Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, edition = {aktualisierte Version}, doi = {10.25972/OPUS-35344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-353444}, pages = {4}, year = {2023}, abstract = {Cooperative, connected and automated mobility (CCAM) systems depend on a reliable communication to provide their service and more crucially to ensure the safety of users. One way to ensure the reliability of a data transmission is to use multiple transmission technologies in combination with redundant flows. In this paper, we describe a system requiring multipath communication in the context of CCAM. To this end, we introduce a data plane-based scheduler that uses replication and integration modules to provide redundant and transparent multipath communication. We provide an analytical model for the full replication module of the system and give an overview of how and where the data-plane scheduler components can be realized.}, language = {en} } @article{SalihogluSrivastavaLiangetal.2023, author = {Salihoglu, Rana and Srivastava, Mugdha and Liang, Chunguang and Schilling, Klaus and Szalay, Aladar and Bencurova, Elena and Dandekar, Thomas}, title = {PRO-Simat: Protein network simulation and design tool}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.04.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350034}, pages = {2767-2779}, year = {2023}, abstract = {PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.}, language = {en} } @article{DresiaKurudzijaDeekenetal.2023, author = {Dresia, Kai and Kurudzija, Eldin and Deeken, Jan and Waxenegger-Wilfing, G{\"u}nther}, title = {Improved wall temperature prediction for the LUMEN rocket combustion chamber with neural networks}, series = {Aerospace}, volume = {10}, journal = {Aerospace}, number = {5}, issn = {2226-4310}, doi = {10.3390/aerospace10050450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319169}, year = {2023}, abstract = {Accurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that a surrogate model based on neural networks is able to predict the maximum wall temperature along straight cooling channels with convincing precision when trained with data from CFD simulations for simple cooling channel segments. In this paper, the methodology is extended to cooling channels with curvature. The predictions of the extended model are tested against CFD simulations with different boundary conditions for the representative LUMEN combustor contour with varying geometries and heat flux densities. The high accuracy of the extended model's predictions, suggests that it will be a valuable tool for designing and analyzing regenerative cooling systems with greater efficiency and effectiveness.}, language = {en} } @article{GreubelAndresHennecke2023, author = {Greubel, Andr{\´e} and Andres, Daniela and Hennecke, Martin}, title = {Analyzing reporting on ransomware incidents: a case study}, series = {Social Sciences}, volume = {12}, journal = {Social Sciences}, number = {5}, issn = {2076-0760}, doi = {10.3390/socsci12050265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313746}, year = {2023}, abstract = {Knowledge about ransomware is important for protecting sensitive data and for participating in public debates about suitable regulation regarding its security. However, as of now, this topic has received little to no attention in most school curricula. As such, it is desirable to analyze what citizens can learn about this topic outside of formal education, e.g., from news articles. This analysis is both relevant to analyzing the public discourse about ransomware, as well as to identify what aspects of this topic should be included in the limited time available for this topic in formal education. Thus, this paper was motivated both by educational and media research. The central goal is to explore how the media reports on this topic and, additionally, to identify potential misconceptions that could stem from this reporting. To do so, we conducted an exploratory case study into the reporting of 109 media articles regarding a high-impact ransomware event: the shutdown of the Colonial Pipeline (located in the east of the USA). We analyzed how the articles introduced central terminology, what details were provided, what details were not, and what (mis-)conceptions readers might receive from them. Our results show that an introduction of the terminology and technical concepts of security is insufficient for a complete understanding of the incident. Most importantly, the articles may lead to four misconceptions about ransomware that are likely to lead to misleading conclusions about the responsibility for the incident and possible political and technical options to prevent such attacks in the future.}, language = {en} } @article{WienrichCarolusMarkusetal.2023, author = {Wienrich, Carolin and Carolus, Astrid and Markus, Andr{\´e} and Augustin, Yannik and Pfister, Jan and Hotho, Andreas}, title = {Long-term effects of perceived friendship with intelligent voice assistants on usage behavior, user experience, and social perceptions}, series = {Computers}, volume = {12}, journal = {Computers}, number = {4}, issn = {2073-431X}, doi = {10.3390/computers12040077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313552}, year = {2023}, abstract = {Social patterns and roles can develop when users talk to intelligent voice assistants (IVAs) daily. The current study investigates whether users assign different roles to devices and how this affects their usage behavior, user experience, and social perceptions. Since social roles take time to establish, we equipped 106 participants with Alexa or Google assistants and some smart home devices and observed their interactions for nine months. We analyzed diverse subjective (questionnaire) and objective data (interaction data). By combining social science and data science analyses, we identified two distinct clusters—users who assigned a friendship role to IVAs over time and users who did not. Interestingly, these clusters exhibited significant differences in their usage behavior, user experience, and social perceptions of the devices. For example, participants who assigned a role to IVAs attributed more friendship to them used them more frequently, reported more enjoyment during interactions, and perceived more empathy for IVAs. In addition, these users had distinct personal requirements, for example, they reported more loneliness. This study provides valuable insights into the role-specific effects and consequences of voice assistants. Recent developments in conversational language models such as ChatGPT suggest that the findings of this study could make an important contribution to the design of dialogic human-AI interactions.}, language = {en} } @article{FischerHarteltPuppe2023, author = {Fischer, Norbert and Hartelt, Alexander and Puppe, Frank}, title = {Line-level layout recognition of historical documents with background knowledge}, series = {Algorithms}, volume = {16}, journal = {Algorithms}, number = {3}, issn = {1999-4893}, doi = {10.3390/a16030136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310938}, year = {2023}, abstract = {Digitization and transcription of historic documents offer new research opportunities for humanists and are the topics of many edition projects. However, manual work is still required for the main phases of layout recognition and the subsequent optical character recognition (OCR) of early printed documents. This paper describes and evaluates how deep learning approaches recognize text lines and can be extended to layout recognition using background knowledge. The evaluation was performed on five corpora of early prints from the 15th and 16th Centuries, representing a variety of layout features. While the main text with standard layouts could be recognized in the correct reading order with a precision and recall of up to 99.9\%, also complex layouts were recognized at a rate as high as 90\% by using background knowledge, the full potential of which was revealed if many pages of the same source were transcribed.}, language = {en} } @article{WangLiuXiaoetal.2023, author = {Wang, Xiaoliang and Liu, Xuan and Xiao, Yun and Mao, Yue and Wang, Nan and Wang, Wei and Wu, Shufan and Song, Xiaoyong and Wang, Dengfeng and Zhong, Xingwang and Zhu, Zhu and Schilling, Klaus and Damaren, Christopher}, title = {On-orbit verification of RL-based APC calibrations for micrometre level microwave ranging system}, series = {Mathematics}, volume = {11}, journal = {Mathematics}, number = {4}, issn = {2227-7390}, doi = {10.3390/math11040942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303970}, year = {2023}, abstract = {Micrometre level ranging accuracy between satellites on-orbit relies on the high-precision calibration of the antenna phase center (APC), which is accomplished through properly designed calibration maneuvers batch estimation algorithms currently. However, the unmodeled perturbations of the space dynamic and sensor-induced uncertainty complicated the situation in reality; ranging accuracy especially deteriorated outside the antenna main-lobe when maneuvers performed. This paper proposes an on-orbit APC calibration method that uses a reinforcement learning (RL) process, aiming to provide the high accuracy ranging datum for onboard instruments with micrometre level. The RL process used here is an improved Temporal Difference advantage actor critic algorithm (TDAAC), which mainly focuses on two neural networks (NN) for critic and actor function. The output of the TDAAC algorithm will autonomously balance the APC calibration maneuvers amplitude and APC-observed sensitivity with an object of maximal APC estimation accuracy. The RL-based APC calibration method proposed here is fully tested in software and on-ground experiments, with an APC calibration accuracy of less than 2 mrad, and the on-orbit maneuver data from 11-12 April 2022, which achieved 1-1.5 mrad calibration accuracy after RL training. The proposed RL-based APC algorithm may extend to prove mass calibration scenes with actions feedback to attitude determination and control system (ADCS), showing flexibility of spacecraft payload applications in the future.}, language = {en} } @phdthesis{Loh2024, author = {Loh, Frank}, title = {Monitoring the Quality of Streaming and Internet of Things Applications}, edition = {korrigierte Version}, issn = {1432-8801}, doi = {10.25972/OPUS-35096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350969}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The ongoing and evolving usage of networks presents two critical challenges for current and future networks that require attention: (1) the task of effectively managing the vast and continually increasing data traffic and (2) the need to address the substantial number of end devices resulting from the rapid adoption of the Internet of Things. Besides these challenges, there is a mandatory need for energy consumption reduction, a more efficient resource usage, and streamlined processes without losing service quality. We comprehensively address these efforts, tackling the monitoring and quality assessment of streaming applications, a leading contributor to the total Internet traffic, as well as conducting an exhaustive analysis of the network performance within a Long Range Wide Area Network (LoRaWAN), one of the rapidly emerging LPWAN solutions.}, subject = {Leistungsbewertung}, language = {en} } @article{LuxBanckSassmannshausenetal.2022, author = {Lux, Thomas J. and Banck, Michael and Saßmannshausen, Zita and Troya, Joel and Krenzer, Adrian and Fitting, Daniel and Sudarevic, Boban and Zoller, Wolfram G. and Puppe, Frank and Meining, Alexander and Hann, Alexander}, title = {Pilot study of a new freely available computer-aided polyp detection system in clinical practice}, series = {International Journal of Colorectal Disease}, volume = {37}, journal = {International Journal of Colorectal Disease}, number = {6}, doi = {10.1007/s00384-022-04178-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324459}, pages = {1349-1354}, year = {2022}, abstract = {Purpose Computer-aided polyp detection (CADe) systems for colonoscopy are already presented to increase adenoma detection rate (ADR) in randomized clinical trials. Those commercially available closed systems often do not allow for data collection and algorithm optimization, for example regarding the usage of different endoscopy processors. Here, we present the first clinical experiences of a, for research purposes publicly available, CADe system. Methods We developed an end-to-end data acquisition and polyp detection system named EndoMind. Examiners of four centers utilizing four different endoscopy processors used EndoMind during their clinical routine. Detected polyps, ADR, time to first detection of a polyp (TFD), and system usability were evaluated (NCT05006092). Results During 41 colonoscopies, EndoMind detected 29 of 29 adenomas in 66 of 66 polyps resulting in an ADR of 41.5\%. Median TFD was 130 ms (95\%-CI, 80-200 ms) while maintaining a median false positive rate of 2.2\% (95\%-CI, 1.7-2.8\%). The four participating centers rated the system using the System Usability Scale with a median of 96.3 (95\%-CI, 70-100). Conclusion EndoMind's ability to acquire data, detect polyps in real-time, and high usability score indicate substantial practical value for research and clinical practice. Still, clinical benefit, measured by ADR, has to be determined in a prospective randomized controlled trial.}, language = {en} } @phdthesis{Kobs2024, author = {Kobs, Konstantin}, title = {Think outside the Black Box: Model-Agnostic Deep Learning with Domain Knowledge}, doi = {10.25972/OPUS-34968}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Deep Learning (DL) models are trained on a downstream task by feeding (potentially preprocessed) input data through a trainable Neural Network (NN) and updating its parameters to minimize the loss function between the predicted and the desired output. While this general framework has mainly remained unchanged over the years, the architectures of the trainable models have greatly evolved. Even though it is undoubtedly important to choose the right architecture, we argue that it is also beneficial to develop methods that address other components of the training process. We hypothesize that utilizing domain knowledge can be helpful to improve DL models in terms of performance and/or efficiency. Such model-agnostic methods can be applied to any existing or future architecture. Furthermore, the black box nature of DL models motivates the development of techniques to understand their inner workings. Considering the rapid advancement of DL architectures, it is again crucial to develop model-agnostic methods. In this thesis, we explore six principles that incorporate domain knowledge to understand or improve models. They are applied either on the input or output side of the trainable model. Each principle is applied to at least two DL tasks, leading to task-specific implementations. To understand DL models, we propose to use Generated Input Data coming from a controllable generation process requiring knowledge about the data properties. This way, we can understand the model's behavior by analyzing how it changes when one specific high-level input feature changes in the generated data. On the output side, Gradient-Based Attribution methods create a gradient at the end of the NN and then propagate it back to the input, indicating which low-level input features have a large influence on the model's prediction. The resulting input features can be interpreted by humans using domain knowledge. To improve the trainable model in terms of downstream performance, data and compute efficiency, or robustness to unwanted features, we explore principles that each address one of the training components besides the trainable model. Input Masking and Augmentation directly modifies the training input data, integrating knowledge about the data and its impact on the model's output. We also explore the use of Feature Extraction using Pretrained Multimodal Models which can be seen as a beneficial preprocessing step to extract useful features. When no training data is available for the downstream task, using such features and domain knowledge expressed in other modalities can result in a Zero-Shot Learning (ZSL) setting, completely eliminating the trainable model. The Weak Label Generation principle produces new desired outputs using knowledge about the labels, giving either a good pretraining or even exclusive training dataset to solve the downstream task. Finally, improving and choosing the right Loss Function is another principle we explore in this thesis. Here, we enrich existing loss functions with knowledge about label interactions or utilize and combine multiple task-specific loss functions in a multitask setting. We apply the principles to classification, regression, and representation tasks as well as to image and text modalities. We propose, apply, and evaluate existing and novel methods to understand and improve the model. Overall, this thesis introduces and evaluates methods that complement the development and choice of DL model architectures.}, subject = {Deep learning}, language = {en} } @article{RenautFreiNuechter2023, author = {Renaut, L{\´e}o and Frei, Heike and N{\"u}chter, Andreas}, title = {Lidar pose tracking of a tumbling spacecraft using the smoothed normal distribution transform}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {9}, issn = {2072-4292}, doi = {10.3390/rs15092286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313738}, year = {2023}, abstract = {Lidar sensors enable precise pose estimation of an uncooperative spacecraft in close range. In this context, the iterative closest point (ICP) is usually employed as a tracking method. However, when the size of the point clouds increases, the required computation time of the ICP can become a limiting factor. The normal distribution transform (NDT) is an alternative algorithm which can be more efficient than the ICP, but suffers from robustness issues. In addition, lidar sensors are also subject to motion blur effects when tracking a spacecraft tumbling with a high angular velocity, leading to a loss of precision in the relative pose estimation. This work introduces a smoothed formulation of the NDT to improve the algorithm's robustness while maintaining its efficiency. Additionally, two strategies are investigated to mitigate the effects of motion blur. The first consists in un-distorting the point cloud, while the second is a continuous-time formulation of the NDT. Hardware-in-the-loop tests at the European Proximity Operations Simulator demonstrate the capability of the proposed methods to precisely track an uncooperative spacecraft under realistic conditions within tens of milliseconds, even when the spacecraft tumbles with a significant angular rate.}, language = {en} } @article{MaiwaldBruschkeSchneideretal.2023, author = {Maiwald, Ferdinand and Bruschke, Jonas and Schneider, Danilo and Wacker, Markus and Niebling, Florian}, title = {Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4D application}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311103}, year = {2023}, abstract = {The ongoing digitization of historical photographs in archives allows investigating the quality, quantity, and distribution of these images. However, the exact interior and exterior camera orientations of these photographs are usually lost during the digitization process. The proposed method uses content-based image retrieval (CBIR) to filter exterior images of single buildings in combination with metadata information. The retrieved photographs are automatically processed in an adapted structure-from-motion (SfM) pipeline to determine the camera parameters. In an interactive georeferencing process, the calculated camera positions are transferred into a global coordinate system. As all image and camera data are efficiently stored in the proposed 4D database, they can be conveniently accessed afterward to georeference newly digitized images by using photogrammetric triangulation and spatial resection. The results show that the CBIR and the subsequent SfM are robust methods for various kinds of buildings and different quantity of data. The absolute accuracy of the camera positions after georeferencing lies in the range of a few meters likely introduced by the inaccurate LOD2 models used for transformation. The proposed photogrammetric method, the database structure, and the 4D visualization interface enable adding historical urban photographs and 3D models from other locations.}, language = {en} } @article{BraeuerBurchardtMunkeltBleieretal.2023, author = {Br{\"a}uer-Burchardt, Christian and Munkelt, Christoph and Bleier, Michael and Heinze, Matthias and Gebhart, Ingo and K{\"u}hmstedt, Peter and Notni, Gunther}, title = {Underwater 3D scanning system for cultural heritage documentation}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311116}, year = {2023}, abstract = {Three-dimensional capturing of underwater archeological sites or sunken shipwrecks can support important documentation purposes. In this study, a novel 3D scanning system based on structured illumination is introduced, which supports cultural heritage documentation and measurement tasks in underwater environments. The newly developed system consists of two monochrome measurement cameras, a projection unit that produces aperiodic sinusoidal fringe patterns, two flashlights, a color camera, an inertial measurement unit (IMU), and an electronic control box. The opportunities and limitations of the measurement principles of the 3D scanning system are discussed and compared to other 3D recording methods such as laser scanning, ultrasound, and photogrammetry, in the context of underwater applications. Some possible operational scenarios concerning cultural heritage documentation are introduced and discussed. A report on application activities in water basins and offshore environments including measurement examples and results of the accuracy measurements is given. The study shows that the new 3D scanning system can be used for both the topographic documentation of underwater sites and to generate detailed true-scale 3D models including the texture and color information of objects that must remain under water.}, language = {en} } @article{DakroubVermaFuehringAgorastouetal.2022, author = {Dakroub, Mohamad and Verma-Fuehring, Raoul and Agorastou, Vaia and Sch{\"o}n, Julian and Hillenkamp, Jost and Puppe, Frank and Loewen, Nils A.}, title = {Inter-eye correlation analysis of 24-h IOPs and glaucoma progression}, series = {Graefe's Archive for Clinical and Experimental Ophthalmology}, volume = {260}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology}, number = {10}, doi = {10.1007/s00417-022-05651-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323831}, pages = {3349-3356}, year = {2022}, abstract = {Purpose To determine whether 24-h IOP monitoring can be a predictor for glaucoma progression and to analyze the inter-eye relationship of IOP, perfusion, and progression parameters. Methods We extracted data from manually drawn IOP curves with HIOP-Reader, a software suite we developed. The relationship between measured IOPs and mean ocular perfusion pressures (MOPP) to retinal nerve fiber layer (RNFL) thickness was analyzed. We determined the ROC curves for peak IOP (T\(_{max}\)), average IOP(T\(_{avg}\)), IOP variation (IOP\(_{var}\)), and historical IOP cut-off levels to detect glaucoma progression (rate of RNFL loss). Bivariate analysis was also conducted to check for various inter-eye relationships. Results Two hundred seventeen eyes were included. The average IOP was 14.8 ± 3.5 mmHg, with a 24-h variation of 5.2 ± 2.9 mmHg. A total of 52\% of eyes with RNFL progression data showed disease progression. There was no significant difference in T\(_{max}\), T\(_{avg}\), and IOP\(_{var}\) between progressors and non-progressors (all p > 0.05). Except for T\(_{avg}\) and the temporal RNFL, there was no correlation between disease progression in any quadrant and T\(_{max}\), T\(_{avg}\), and IOP\(_{var}\). Twenty-four-hour and outpatient IOP variables had poor sensitivities and specificities in detecting disease progression. The correlation of inter-eye parameters was moderate; correlation with disease progression was weak. Conclusion In line with our previous study, IOP data obtained during a single visit (outpatient or inpatient monitoring) make for a poor diagnostic tool, no matter the method deployed. Glaucoma progression and perfusion pressure in left and right eyes correlated weakly to moderately with each other. Key messages What is known: ● Our prior study showed that manually obtained 24-hour inpatient IOP measurements in right eyes are poor predictors for glaucoma progression. The inter-eye relationship of 24-hour IOP parameters and disease progression on optical coherence tomography (OCT) has not been examined. What we found: ● 24-hour IOP profiles of left eyes from the same study were a poor diagnostic tool to detect worsening glaucoma. ● Significant inter-eye correlations of various strengths were found for all tested parameters}, language = {en} } @article{KempfKrugPuppe2023, author = {Kempf, Sebastian and Krug, Markus and Puppe, Frank}, title = {KIETA: Key-insight extraction from scientific tables}, series = {Applied Intelligence}, volume = {53}, journal = {Applied Intelligence}, number = {8}, issn = {0924-669X}, doi = {10.1007/s10489-022-03957-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324180}, pages = {9513-9530}, year = {2023}, abstract = {An important but very time consuming part of the research process is literature review. An already large and nevertheless growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation. Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications. The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments show promising results that signal the possibility of an automated system, while also indicating limits of extracting knowledge from tables without any context.}, language = {en} } @article{RiedmannSchaperLugrin2022, author = {Riedmann, Anna and Schaper, Philipp and Lugrin, Birgit}, title = {Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance}, series = {AI \& Society}, journal = {AI \& Society}, issn = {0951-5666}, doi = {10.1007/s00146-022-01514-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324208}, year = {2022}, abstract = {Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning.}, language = {en} } @phdthesis{Loh2024, author = {Loh, Frank}, title = {Monitoring the Quality of Streaming and Internet of Things Applications}, issn = {1432-8801}, doi = {10.25972/OPUS-34783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The ongoing and evolving usage of networks presents two critical challenges for current and future networks that require attention: (1) the task of effectively managing the vast and continually increasing data traffic and (2) the need to address the substantial number of end devices resulting from the rapid adoption of the Internet of Things. Besides these challenges, there is a mandatory need for energy consumption reduction, a more efficient resource usage, and streamlined processes without losing service quality. We comprehensively address these efforts, tackling the monitoring and quality assessment of streaming applications, a leading contributor to the total Internet traffic, as well as conducting an exhaustive analysis of the network performance within a Long Range Wide Area Network (LoRaWAN), one of the rapidly emerging LPWAN solutions.}, subject = {Leistungsbewertung}, language = {en} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} } @article{WienrichCarolusRothIsigkeitetal.2022, author = {Wienrich, Carolin and Carolus, Astrid and Roth-Isigkeit, David and Hotho, Andreas}, title = {Inhibitors and enablers to explainable AI success: a systematic examination of explanation complexity and individual characteristics}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {12}, issn = {2414-4088}, doi = {10.3390/mti6120106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297288}, year = {2022}, abstract = {With the increasing adaptability and complexity of advisory artificial intelligence (AI)-based agents, the topics of explainable AI and human-centered AI are moving close together. Variations in the explanation itself have been widely studied, with some contradictory results. These could be due to users' individual differences, which have rarely been systematically studied regarding their inhibiting or enabling effect on the fulfillment of explanation objectives (such as trust, understanding, or workload). This paper aims to shed light on the significance of human dimensions (gender, age, trust disposition, need for cognition, affinity for technology, self-efficacy, attitudes, and mind attribution) as well as their interplay with different explanation modes (no, simple, or complex explanation). Participants played the game Deal or No Deal while interacting with an AI-based agent. The agent gave advice to the participants on whether they should accept or reject the deals offered to them. As expected, giving an explanation had a positive influence on the explanation objectives. However, the users' individual characteristics particularly reinforced the fulfillment of the objectives. The strongest predictor of objective fulfillment was the degree of attribution of human characteristics. The more human characteristics were attributed, the more trust was placed in the agent, advice was more likely to be accepted and understood, and important needs were satisfied during the interaction. Thus, the current work contributes to a better understanding of the design of explanations of an AI-based agent system that takes into account individual characteristics and meets the demand for both explainable and human-centered agent systems.}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} } @techreport{BoeschStielerLydonetal.2023, author = {B{\"o}sch, Carolin and Stieler, Malena and Lydon, Salomon and Hesse, Martin and Ali, Hassan and Finzel, Matthias and Faraz Ali, Syed and Salian, Yash and Alnoor, Hiba and John, Jeena and Lakkad, Harsh and Bhosale, Devraj and Jafarian, Timon and Parvathi, Uma and Ezzatpoor, Narges and Datar, Tanuja}, title = {Venus Research Station}, issn = {2747-9374}, doi = {10.25972/OPUS-32869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328695}, pages = {232}, year = {2023}, abstract = {Because of the extreme conditions in the atmosphere, Venus has been less explored than for example Mars. Only a few probes have been able to survive on the surface for very short periods in the past and have sent data. The atmosphere is also far from being fully explored. It could even be that building blocks of life can be found in more moderate layers of the planet's atmosphere. It can therefore be assumed that the planet Venus will increasingly become a focus of exploration. One way to collect significantly more data in situ is to build and operate an atmospheric research station over an extended period of time. This could carry out measurements at different positions and at different times and thus significantly expand our knowledge of the planet. In this work, the design of a Venus Research Station floating within the Venusian atmosphere is presented, which is complemented by the design of deployable atmospheric Scouts. The design of these components is done on a conceptual basis.}, subject = {Venus}, language = {en} } @article{KempfScharnaglHeiletal.2022, author = {Kempf, Florian and Scharnagl, Julian and Heil, Stefan and Schilling, Klaus}, title = {Self-organizing control-loop recovery for predictive networked formation control of fractionated spacecraft}, series = {Aerospace}, volume = {9}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace9100529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288041}, year = {2022}, abstract = {Going beyond the current trend of cooperating multiple small satellites we arrive at fractionated satellite architectures. Here the subsystems of all satellites directly self-organize and cooperate among themselves to achieve a common mission goal. Although this leads to a further increase of the advantages of the initial trend it also introduces new challenges, one of which is how to perform closed-loop control of a satellite over a network of subsystems. We present a two-fold approach to deal with the two main disturbances, data losses in the network and failure of the controller, in a networked predictive formation control scenario. To deal with data loss an event based networked model predictive control approach is extended to enable it to adapt to changing network conditions. The controller failure detection and compensation approach is tailored for a possibly large network of heterogeneous cooperating actuator- and controller nodes. The self-organized control task redistribution uses an auction-based methodology. It scales well with the number of nodes and allows to optimize for continuing good control performance despite the controller switch. The stability and smooth control behavior of our approach during a self-organized controller failure compensation while also being subject to data losses was demonstrated on a hardware testbed using as mission a formation control scenario.}, language = {en} } @article{SchlundGermanPruckner2022, author = {Schlund, Jonas and German, Reinhard and Pruckner, Marco}, title = {Synergy of unidirectional and bidirectional smart charging of electric vehicles for frequency containment reserve power provision}, series = {World Electric Vehicle Journal}, volume = {13}, journal = {World Electric Vehicle Journal}, number = {9}, issn = {2032-6653}, doi = {10.3390/wevj13090168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288324}, year = {2022}, abstract = {Besides the integration of renewable energies, electric vehicles pose an additional challenge to modern power grids. However, electric vehicles can also be a flexibility source and contribute to the power system stability. Today, the power system still heavily relies on conventional technologies to stay stable. In order to operate a future power system based on renewable energies only, we need to understand the flexibility potential of assets such as electric vehicles and become able to use their flexibility. In this paper, we analyzed how vast amounts of coordinated charging processes can be used to provide frequency containment reserve power, one of the most important ancillary services for system stability. Therefore, we used an extensive simulation model of a virtual power plant of millions of electric vehicles. The model considers not only technical components but also the stochastic behavior of electric vehicle drivers based on real data. Our results show that, in 2030, electric vehicles have the potential to serve the whole frequency containment reserve power market in Germany. We differentiate between using unidirectional and bidirectional chargers. Bidirectional chargers have a larger potential but also result in unwanted battery degradation. Unidirectional chargers are more constrained in terms of flexibility, but do not lead to additional battery degradation. We conclude that using a mix of both can combine the advantages of both worlds. Thereby, average private cars can provide the service without any notable additional battery degradation and achieve yearly earnings between EUR 200 and EUR 500, depending on the volatile market prices. Commercial vehicles have an even higher potential, as the results increase with vehicle utilization and consumption.}, language = {en} } @article{SchaffarczykKoehnOggianoetal.2022, author = {Schaffarczyk, Alois and Koehn, Silas and Oggiano, Luca and Schaffarczyk, Kai}, title = {Aerodynamic benefits by optimizing cycling posture}, series = {Applied Sciences}, volume = {12}, journal = {Applied Sciences}, number = {17}, issn = {2076-3417}, doi = {10.3390/app12178475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285942}, year = {2022}, abstract = {An approach to aerodynamically optimizing cycling posture and reducing drag in an Ironman (IM) event was elaborated. Therefore, four commonly used positions in cycling were investigated and simulated for a flow velocity of 10 m/s and yaw angles of 0-20° using OpenFoam-based Nabla Flow CFD simulation software software. A cyclist was scanned using an IPhone 12, and a special-purpose meshing software BLENDER was used. Significant differences were observed by changing and optimizing the cyclist's posture. Aerodynamic drag coefficient (CdA) varies by more than a factor of 2, ranging from 0.214 to 0.450. Within a position, the CdA tends to increase slightly at yaw angles of 5-10° and decrease at higher yaw angles compared to a straight head wind, except for the time trial (TT) position. The results were applied to the IM Hawaii bike course (180 km), estimating a constant power output of 300 W. Including the wind distributions, two different bike split models for performance prediction were applied. Significant time saving of roughly 1 h was found. Finally, a machine learning approach to deduce 3D triangulation for specific body shapes from 2D pictures was tested.}, language = {en} } @article{KoehlerBauerDietzetal.2022, author = {Koehler, Jonas and Bauer, Andr{\´e} and Dietz, Andreas J. and Kuenzer, Claudia}, title = {Towards forecasting future snow cover dynamics in the European Alps — the potential of long optical remote-sensing time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs14184461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288338}, year = {2022}, abstract = {Snow is a vital environmental parameter and dynamically responsive to climate change, particularly in mountainous regions. Snow cover can be monitored at variable spatial scales using Earth Observation (EO) data. Long-lasting remote sensing missions enable the generation of multi-decadal time series and thus the detection of long-term trends. However, there have been few attempts to use these to model future snow cover dynamics. In this study, we, therefore, explore the potential of such time series to forecast the Snow Line Elevation (SLE) in the European Alps. We generate monthly SLE time series from the entire Landsat archive (1985-2021) in 43 Alpine catchments. Positive long-term SLE change rates are detected, with the highest rates (5-8 m/y) in the Western and Central Alps. We utilize this SLE dataset to implement and evaluate seven uni-variate time series modeling and forecasting approaches. The best results were achieved by Random Forests, with a Nash-Sutcliffe efficiency (NSE) of 0.79 and a Mean Absolute Error (MAE) of 258 m, Telescope (0.76, 268 m), and seasonal ARIMA (0.75, 270 m). Since the model performance varies strongly with the input data, we developed a combined forecast based on the best-performing methods in each catchment. This approach was then used to forecast the SLE for the years 2022-2029. In the majority of the catchments, the shift of the forecast median SLE level retained the sign of the long-term trend. In cases where a deviating SLE dynamic is forecast, a discussion based on the unique properties of the catchment and past SLE dynamics is required. In the future, we expect major improvements in our SLE forecasting efforts by including external predictor variables in a multi-variate modeling approach.}, language = {en} } @techreport{DworzakGrossmannLe2023, type = {Working Paper}, author = {Dworzak, Manuel and Großmann, Marcel and Le, Duy Thanh}, title = {Federated Learning for Service Placement in Fog and Edge Computing}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322193}, pages = {4}, year = {2023}, abstract = {Service orchestration requires enormous attention and is a struggle nowadays. Of course, virtualization provides a base level of abstraction for services to be deployable on a lot of infrastructures. With container virtualization, the trend to migrate applications to a micro-services level in order to be executable in Fog and Edge Computing environments increases manageability and maintenance efforts rapidly. Similarly, network virtualization adds effort to calibrate IP flows for Software-Defined Networks and eventually route it by means of Network Function Virtualization. Nevertheless, there are concepts like MAPE-K to support micro-service distribution in next-generation cloud and network environments. We want to explore, how a service distribution can be improved by adopting machine learning concepts for infrastructure or service changes. Therefore, we show how federated machine learning is integrated into a cloud-to-fog-continuum without burdening single nodes.}, language = {en} } @techreport{GrossmannLe2023, type = {Working Paper}, author = {Großmann, Marcel and Le, Duy Thanh}, title = {Visualization of Network Emulation Enabled by Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322189}, pages = {4}, year = {2023}, abstract = {In network research, reproducibility of experiments is not always easy to achieve. Infrastructures are cumbersome to set up or are not available due to vendor-specific devices. Emulators try to overcome those issues to a given extent and are available in different service models. Unfortunately, the usability of emulators requires time-consuming efforts and a deep understanding of their functionality. At first, we analyze to which extent currently available open-source emulators support network configurations and how user-friendly they are. With these insights, we describe, how an ease-to-use emulator is implemented and may run as a Network Emulator as a Service (NEaaS). Therefore, virtualization plays a major role in order to deploy a NEaaS based on Kathar{\´a}.}, language = {en} } @techreport{NavadeMaileGerman2023, type = {Working Paper}, author = {Navade, Piyush and Maile, Lisa and German, Reinhard}, title = {Multiple DCLC Routing Algorithms for Ultra-Reliable and Time-Sensitive Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322177}, pages = {4}, year = {2023}, abstract = {This paper discusses the problem of finding multiple shortest disjoint paths in modern communication networks, which is essential for ultra-reliable and time-sensitive applications. Dijkstra's algorithm has been a popular solution for the shortest path problem, but repetitive use of it to find multiple paths is not scalable. The Multiple Disjoint Path Algorithm (MDPAlg), published in 2021, proposes the use of a single full graph to construct multiple disjoint paths. This paper proposes modifications to the algorithm to include a delay constraint, which is important in time-sensitive applications. Different delay constraint least-cost routing algorithms are compared in a comprehensive manner to evaluate the benefits of the adapted MDPAlg algorithm. Fault tolerance, and thereby reliability, is ensured by generating multiple link-disjoint paths from source to destination.}, language = {en} } @techreport{LohRaffeckGeissleretal.2023, type = {Working Paper}, author = {Loh, Frank and Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Paving the Way for an Energy Efficient and Sustainable Future Internet of Things}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322161}, pages = {4}, year = {2023}, abstract = {In this work, we describe the network from data collection to data processing and storage as a system based on different layers. We outline the different layers and highlight major tasks and dependencies with regard to energy consumption and energy efficiency. With this view, we can outwork challenges and questions a future system architect must answer to provide a more sustainable, green, resource friendly, and energy efficient application or system. Therefore, all system layers must be considered individually but also altogether for future IoT solutions. This requires, in particular, novel sustainability metrics in addition to current Quality of Service and Quality of Experience metrics to provide a high power, user satisfying, and sustainable network.}, language = {en} } @techreport{FundaKonheiserGermanetal.2023, type = {Working Paper}, author = {Funda, Christoph and Konheiser, Tobias and German, Reinhard and Hielscher, Kai-Steffen}, title = {How to Model and Predict the Scalability of a Hardware-In-The-Loop Test Bench for Data Re-Injection?}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322150}, pages = {4}, year = {2023}, abstract = {This paper describes a novel application of an empirical network calculus model based on measurements of a hardware-in-the-loop (HIL) test system. The aim is to predict the performance of a HIL test bench for open-loop re-injection in the context of scalability. HIL test benches are distributed computer systems including software, hardware, and networking devices. They are used to validate complex technical systems, but have not yet been system under study themselves. Our approach is to use measurements from the HIL system to create an empirical model for arrival and service curves. We predict the performance and design the previously unknown parameters of the HIL simulator with network calculus (NC), namely the buffer sizes and the minimum needed pre-buffer time for the playback buffer. We furthermore show, that it is possible to estimate the CPU load from arrival and service-curves based on the utilization theorem, and hence estimate the scalability of the HIL system in the context of the number of sensor streams.}, language = {en} } @techreport{MartinoDeutschmannHielscheretal.2023, type = {Working Paper}, author = {Martino, Luigi and Deutschmann, J{\"o}rg and Hielscher, Kai-Steffen and German, Reinhard}, title = {Towards a 5G Satellite Communication Framework for V2X}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322148}, pages = {5}, year = {2023}, abstract = {In recent years, satellite communication has been expanding its field of application in the world of computer networks. This paper aims to provide an overview of how a typical scenario involving 5G Non-Terrestrial Networks (NTNs) for vehicle to everything (V2X) applications is characterized. In particular, a first implementation of a system that integrates them together will be described. Such a framework will later be used to evaluate the performance of applications such as Vehicle Monitoring (VM), Remote Driving (RD), Voice Over IP (VoIP), and others. Different configuration scenarios such as Low Earth Orbit and Geostationary Orbit will be considered.}, language = {en} } @techreport{RauberBrechtelSchotten2023, type = {Working Paper}, author = {Rauber, Christof A. O. and Brechtel, Lukas and Schotten, Hans D.}, title = {JCAS-Enabled Sensing as a Service in 6th-Generation Mobile Communication Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322135}, pages = {4}, year = {2023}, abstract = {The introduction of new types of frequency spectrum in 6G technology facilitates the convergence of conventional mobile communications and radar functions. Thus, the mobile network itself becomes a versatile sensor system. This enables mobile network operators to offer a sensing service in addition to conventional data and telephony services. The potential benefits are expected to accrue to various stakeholders, including individuals, the environment, and society in general. The paper discusses technological development, possible integration, and use cases, as well as future development areas.}, language = {en} } @techreport{VomhoffGeisslerGebertetal.2023, type = {Working Paper}, author = {Vomhoff, Viktoria and Geissler, Stefan and Gebert, Steffen and Hossfeld, Tobias}, title = {Towards Understanding the Global IPX Network from an MVNO Perspective}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322121}, pages = {4}, year = {2023}, abstract = {In this paper, we work to understand the global IPX network from the perspective of an MVNO. In order to do this, we provide a brief description of the global architecture of mobile carriers. We provide initial results with respect to mapping the vast and complex interconnection network enabling global roaming from the point of view of a single MVNO. Finally, we provide preliminary results regarding the quality of service observed under global roaming conditions.}, language = {en} } @techreport{FundaMarinGarciaGermanetal.2023, type = {Working Paper}, author = {Funda, Christoph and Mar{\´i}n Garc{\´i}a, Pablo and German, Reinhard and Hielscher, Kai-Steffen}, title = {Online Algorithm for Arrival \& Service Curve Estimation}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322112}, pages = {5}, year = {2023}, abstract = {This paper presents a novel concept to extend state-of-the-art buffer monitoring with additional measures to estimate service-curves. The online algorithm for service-curve estimation replaces the state-of-the-art timestamp logging, as we expect it to overcome the main disadvantages of generating a huge amount of data and using a lot of CPU resources to store the data to a file during operation. We prove the accuracy of the online-algorithm offline with timestamp data and compare the derived bounds to the measured delay and backlog. We also do a proof-of- concept of the online-algorithm, implement it in LabVIEW and compare its performance to the timestamp logging by CPU load and data-size of the log-file. However, the implementation is still work-in-progress.}, language = {en} } @techreport{MazighBeausencourtBodeetal.2023, type = {Working Paper}, author = {Mazigh, Sadok Mehdi and Beausencourt, Marcel and Bode, Max Julius and Scheffler, Thomas}, title = {Using P4-INT on Tofino for Measuring Device Performance Characteristics in a Network Lab}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322084}, pages = {4}, year = {2023}, abstract = {This paper presents a prototypical implementation of the In-band Network Telemetry (INT) specification in P4 and demonstrates a use case, where a Tofino Switch is used to measure device and network performance in a lab setting. This work is based on research activities in the area of P4 data plane programming conducted at the network lab of HTW Berlin.}, language = {en} } @techreport{SimonGallenmuellerCarle2023, type = {Working Paper}, author = {Simon, Manuel and Gallenm{\"u}ller, Sebastian and Carle, Georg}, title = {Never Miss Twice - Add-On-Miss Table Updates in Software Data Planes}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322071}, pages = {5}, year = {2023}, abstract = {State Management at line rate is crucial for critical applications in next-generation networks. P4 is a language used in software-defined networking to program the data plane. The data plane can profit in many circumstances when it is allowed to manage its state without any detour over a controller. This work is based on a previous study by investigating the potential and performance of add-on-miss insertions of state by the data plane. The state keeping capabilities of P4 are limited regarding the amount of data and the update frequency. We follow the tentative specification of an upcoming portable-NIC-architecture and implement these changes into the software P4 target T4P4S. We show that insertions are possible with only a slight overhead compared to lookups and evaluate the influence of the rate of insertions on their latency.}, language = {en} } @techreport{GrigorjewSchumannDiederichetal.2023, type = {Working Paper}, author = {Grigorjew, Alexej and Schumann, Lukas Kilian and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Understanding the Performance of Different Packet Reception and Timestamping Methods in Linux}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322064}, pages = {5}, year = {2023}, abstract = {This document briefly presents some renowned packet reception techniques for network packets in Linux systems. Further, it compares their performance when measuring packet timestamps with respect to throughput and accuracy. Both software and hardware timestamps are compared, and various parameters are examined, including frame size, link speed, network interface card, and CPU load. The results indicate that hardware timestamping offers significantly better accuracy with no downsides, and that packet reception techniques that avoid system calls offer superior measurement throughput.}, language = {en} } @techreport{BrischKasslerVestinetal.2023, type = {Working Paper}, author = {Brisch, Fabian and Kassler, Andreas and Vestin, Jonathan and Pieska, Marcus and Amend, Markus}, title = {Accelerating Transport Layer Multipath Packet Scheduling for 5G-ATSSS}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322052}, pages = {4}, year = {2023}, abstract = {Utilizing multiple access networks such as 5G, 4G, and Wi-Fi simultaneously can lead to increased robustness, resiliency, and capacity for mobile users. However, transparently implementing packet distribution over multiple paths within the core of the network faces multiple challenges including scalability to a large number of customers, low latency, and high-capacity packet processing requirements. In this paper, we offload congestion-aware multipath packet scheduling to a smartNIC. However, such hardware acceleration faces multiple challenges due to programming language and platform limitations. We implement different multipath schedulers in P4 with different complexity in order to cope with dynamically changing path capacities. Using testbed measurements, we show that our CMon scheduler, which monitors path congestion in the data plane and dynamically adjusts scheduling weights for the different paths based on path state information, can process more than 3.5 Mpps packets 25 μs latency.}, language = {en} } @techreport{HasslingerNtougiasHasslingeretal.2023, type = {Working Paper}, author = {Hasslinger, Gerhard and Ntougias, Konstantinos and Hasslinger, Frank and Hohlfeld, Oliver}, title = {Performance Analysis of Basic Web Caching Strategies (LFU, LRU, FIFO, ...) with Time-To-Live Data Validation}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322048}, pages = {5}, year = {2023}, abstract = {Web caches often use a Time-to-live (TTL) limit to validate data consistency with web servers. We study the impact of TTL constraints on the hit ratio of basic strategies in caches of fixed size. We derive analytical results and confirm their accuracy in comparison to simulations. We propose a score-based caching method with awareness of the current TTL per data for improving the hit ratio close to the upper bound.}, language = {en} } @techreport{HerrmannRizk2023, type = {Working Paper}, author = {Herrmann, Martin and Rizk, Amr}, title = {On Data Plane Multipath Scheduling for Connected Mobility Applications}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322033}, pages = {3}, year = {2023}, abstract = {Cooperative, connected and automated mobility (CCAM) systems depend on a reliable communication to provide their service and more crucially to ensure the safety of users. One way to ensure the reliability of a data transmission is to use multiple transmission technologies in combination with redundant flows. In this paper, we describe a system requiring multipath communication in the context of CCAM. To this end, we introduce a data plane-based scheduler that uses replication and integration modules to provide redundant and transparent multipath communication. We provide an analytical model for the full replication module of the system and give an overview of how and where the data-plane scheduler components can be realized.}, language = {en} } @techreport{NguyenLohHossfeld2023, type = {Working Paper}, author = {Nguyen, Kien and Loh, Frank and Hoßfeld, Tobias}, title = {Challenges of Serverless Deployment in Edge-MEC-Cloud}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322025}, pages = {4}, year = {2023}, abstract = {The emerging serverless computing may meet Edge Cloud in a beneficial manner as the two offer flexibility and dynamicity in optimizing finite hardware resources. However, the lack of proper study of a joint platform leaves a gap in literature about consumption and performance of such integration. To this end, this paper identifies the key questions and proposes a methodology to answer them.}, language = {en} } @techreport{RaffeckGeisslerHossfeld2023, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {Towards Understanding the Signaling Traffic in 5G Core Networks}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322106}, pages = {4}, year = {2023}, abstract = {The Fifth Generation (5G) communication technology, its infrastructure and architecture, though already deployed in campus and small scale networks, is still undergoing continuous changes and research. Especially, in the light of future large scale deployments and industrial use cases, a detailed analysis of the performance and utilization with regard to latency and service times constraints is crucial. To this end, a fine granular investigation of the Network Function (NF) based core system and the duration for all the tasks performed by these services is necessary. This work presents the first steps towards analyzing the signaling traffic in 5G core networks, and introduces a tool to automatically extract sequence diagrams and service times for NF tasks from traffic traces.}, language = {en} } @techreport{GrossmannHomeyer2023, type = {Working Paper}, author = {Großmann, Marcel and Homeyer, Tobias}, title = {Emulation of Multipath Transmissions in P4 Networks with Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322095}, pages = {4}, year = {2023}, abstract = {Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathar{\´a}.}, language = {en} } @article{WamserSeufertHalletal.2021, author = {Wamser, Florian and Seufert, Anika and Hall, Andrew and Wunderer, Stefan and Hoßfeld, Tobias}, title = {Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements}, series = {Network}, volume = {1}, journal = {Network}, number = {2}, issn = {2673-8732}, doi = {10.3390/network1020013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284154}, pages = {215 -- 232}, year = {2021}, abstract = {Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider.}, language = {en} } @phdthesis{Krenzer2023, author = {Krenzer, Adrian}, title = {Machine learning to support physicians in endoscopic examinations with a focus on automatic polyp detection in images and videos}, doi = {10.25972/OPUS-31911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Deep learning enables enormous progress in many computer vision-related tasks. Artificial Intel- ligence (AI) steadily yields new state-of-the-art results in the field of detection and classification. Thereby AI performance equals or exceeds human performance. Those achievements impacted many domains, including medical applications. One particular field of medical applications is gastroenterology. In gastroenterology, machine learning algorithms are used to assist examiners during interventions. One of the most critical concerns for gastroenterologists is the development of Colorectal Cancer (CRC), which is one of the leading causes of cancer-related deaths worldwide. Detecting polyps in screening colonoscopies is the essential procedure to prevent CRC. Thereby, the gastroenterologist uses an endoscope to screen the whole colon to find polyps during a colonoscopy. Polyps are mucosal growths that can vary in severity. This thesis supports gastroenterologists in their examinations with automated detection and clas- sification systems for polyps. The main contribution is a real-time polyp detection system. This system is ready to be installed in any gastroenterology practice worldwide using open-source soft- ware. The system achieves state-of-the-art detection results and is currently evaluated in a clinical trial in four different centers in Germany. The thesis presents two additional key contributions: One is a polyp detection system with ex- tended vision tested in an animal trial. Polyps often hide behind folds or in uninvestigated areas. Therefore, the polyp detection system with extended vision uses an endoscope assisted by two additional cameras to see behind those folds. If a polyp is detected, the endoscopist receives a vi- sual signal. While the detection system handles the additional two camera inputs, the endoscopist focuses on the main camera as usual. The second one are two polyp classification models, one for the classification based on shape (Paris) and the other on surface and texture (NBI International Colorectal Endoscopic (NICE) classification). Both classifications help the endoscopist with the treatment of and the decisions about the detected polyp. The key algorithms of the thesis achieve state-of-the-art performance. Outstandingly, the polyp detection system tested on a highly demanding video data set shows an F1 score of 90.25 \% while working in real-time. The results exceed all real-time systems in the literature. Furthermore, the first preliminary results of the clinical trial of the polyp detection system suggest a high Adenoma Detection Rate (ADR). In the preliminary study, all polyps were detected by the polyp detection system, and the system achieved a high usability score of 96.3 (max 100). The Paris classification model achieved an F1 score of 89.35 \% which is state-of-the-art. The NICE classification model achieved an F1 score of 81.13 \%. Furthermore, a large data set for polyp detection and classification was created during this thesis. Therefore a fast and robust annotation system called Fast Colonoscopy Annotation Tool (FastCAT) was developed. The system simplifies the annotation process for gastroenterologists. Thereby the i gastroenterologists only annotate key parts of the endoscopic video. Afterward, those video parts are pre-labeled by a polyp detection AI to speed up the process. After the AI has pre-labeled the frames, non-experts correct and finish the annotation. This annotation process is fast and ensures high quality. FastCAT reduces the overall workload of the gastroenterologist on average by a factor of 20 compared to an open-source state-of-art annotation tool.}, subject = {Deep Learning}, language = {en} } @article{HeinLatoschikWienrich2022, author = {Hein, Rebecca M. and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Inter- and transcultural learning in cocial virtual reality: a proposal for an inter- and transcultural virtual object database to be used in the implementation, reflection, and evaluation of virtual encounters}, series = {Multimodal Technologies and Interaction}, volume = {6}, journal = {Multimodal Technologies and Interaction}, number = {7}, issn = {2414-4088}, doi = {10.3390/mti6070050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278974}, year = {2022}, abstract = {Visual stimuli are frequently used to improve memory, language learning or perception, and understanding of metacognitive processes. However, in virtual reality (VR), there are few systematically and empirically derived databases. This paper proposes the first collection of virtual objects based on empirical evaluation for inter-and transcultural encounters between English- and German-speaking learners. We used explicit and implicit measurement methods to identify cultural associations and the degree of stereotypical perception for each virtual stimuli (n = 293) through two online studies, including native German and English-speaking participants. The analysis resulted in a final well-describable database of 128 objects (called InteractionSuitcase). In future applications, the objects can be used as a great interaction or conversation asset and behavioral measurement tool in social VR applications, especially in the field of foreign language education. For example, encounters can use the objects to describe their culture, or teachers can intuitively assess stereotyped attitudes of the encounters.}, language = {en} } @article{WernerStrohmeierRotheetal.2022, author = {Werner, Lennart and Strohmeier, Michael and Rothe, Julian and Montenegro, Sergio}, title = {Thrust vector observation for force feedback-controlled UAVs}, series = {Drones}, volume = {6}, journal = {Drones}, number = {2}, issn = {2504-446X}, doi = {10.3390/drones6020049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262153}, year = {2022}, abstract = {This paper presents a novel approach to Thrust Vector Control (TVC) for small Unmanned Aerial Vehicles (UAVs). The difficulties associated with conventional feed-forward TVC are outlined, and a practical solution to conquer these challenges is derived. The solution relies on observing boom deformations that are created by different thrust vector directions and high-velocity air inflow. The paper describes the required measurement electronics as well as the implementation of a dedicated testbed that allows the evaluation of mid-flight force measurements. Wind-tunnel tests show that the presented method for active thrust vector determination is able to quantify the disturbances due to the incoming air flow.}, language = {en} } @phdthesis{Kanbar2023, author = {Kanbar, Farah}, title = {Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-210-2}, doi = {10.25972/WUP-978-3-95826-211-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301903}, school = {W{\"u}rzburg University Press}, pages = {xiv, 137}, year = {2023}, abstract = {In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Steininger2023, author = {Steininger, Michael}, title = {Deep Learning for Geospatial Environmental Regression}, doi = {10.25972/OPUS-31312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues' substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model's generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location's land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model's output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth's surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi-supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment.}, subject = {Deep learning}, language = {en} } @article{BrandTroyaKrenzeretal.2022, author = {Brand, Markus and Troya, Joel and Krenzer, Adrian and Saßmannshausen, Zita and Zoller, Wolfram G. and Meining, Alexander and Lux, Thomas J. and Hann, Alexander}, title = {Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions}, series = {United European Gastroenterology Journal}, volume = {10}, journal = {United European Gastroenterology Journal}, number = {5}, doi = {10.1002/ueg2.12235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312708}, pages = {477-484}, year = {2022}, abstract = {Background The efficiency of artificial intelligence as computer-aided detection (CADe) systems for colorectal polyps has been demonstrated in several randomized trials. However, CADe systems generate many distracting detections, especially during interventions such as polypectomies. Those distracting CADe detections are often induced by the introduction of snares or biopsy forceps as the systems have not been trained for such situations. In addition, there are a significant number of non-false but not relevant detections, since the polyp has already been previously detected. All these detections have the potential to disturb the examiner's work. Objectives Development and evaluation of a convolutional neuronal network that recognizes instruments in the endoscopic image, suppresses distracting CADe detections, and reliably detects endoscopic interventions. Methods A total of 580 different examination videos from 9 different centers using 4 different processor types were screened for instruments and represented the training dataset (519,856 images in total, 144,217 contained a visible instrument). The test dataset included 10 full-colonoscopy videos that were analyzed for the recognition of visible instruments and detections by a commercially available CADe system (GI Genius, Medtronic). Results The test dataset contained 153,623 images, 8.84\% of those presented visible instruments (12 interventions, 19 instruments used). The convolutional neuronal network reached an overall accuracy in the detection of visible instruments of 98.59\%. Sensitivity and specificity were 98.55\% and 98.92\%, respectively. A mean of 462.8 frames containing distracting CADe detections per colonoscopy were avoided using the convolutional neuronal network. This accounted for 95.6\% of all distracting CADe detections. Conclusions Detection of endoscopic instruments in colonoscopy using artificial intelligence technology is reliable and achieves high sensitivity and specificity. Accordingly, the new convolutional neuronal network could be used to reduce distracting CADe detections during endoscopic procedures. Thus, our study demonstrates the great potential of artificial intelligence technology beyond mucosal assessment.}, language = {en} } @article{TsouliasJoerissenNuechter2022, author = {Tsoulias, Nikos and J{\"o}rissen, Sven and N{\"u}chter, Andreas}, title = {An approach for monitoring temperature on fruit surface by means of thermal point cloud}, series = {MethodsX}, volume = {9}, journal = {MethodsX}, issn = {2215-0161}, doi = {10.1016/j.mex.2022.101712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300270}, year = {2022}, abstract = {Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface.}, language = {en} } @article{SeufertPoigneeHossfeldetal.2022, author = {Seufert, Anika and Poign{\´e}e, Fabian and Hoßfeld, Tobias and Seufert, Michael}, title = {Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown}, series = {Humanities and Social Sciences Communications}, volume = {9}, journal = {Humanities and Social Sciences Communications}, doi = {10.1057/s41599-022-01161-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300261}, year = {2022}, abstract = {The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people's daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people's behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion.}, language = {en} } @article{KrenzerBanckMakowskietal.2023, author = {Krenzer, Adrian and Banck, Michael and Makowski, Kevin and Hekalo, Amar and Fitting, Daniel and Troya, Joel and Sudarevic, Boban and Zoller, Wolfgang G. and Hann, Alexander and Puppe, Frank}, title = {A real-time polyp-detection system with clinical application in colonoscopy using deep convolutional neural networks}, series = {Journal of Imaging}, volume = {9}, journal = {Journal of Imaging}, number = {2}, issn = {2313-433X}, doi = {10.3390/jimaging9020026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304454}, year = {2023}, abstract = {Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There are already publications examining the problem of polyp detection in the literature. Nevertheless, most of these systems are only used in the research context and are not implemented for clinical application. Therefore, we introduce the first fully open-source automated polyp-detection system scoring best on current benchmark data and implementing it ready for clinical application. To create the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from different hospitals and practices in Germany with open-source datasets to create a dataset with over 500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on video detection to work in real-time with a stream of images. It is integrated into a prototype ready for application in clinical interventions. We achieve better performance compared to the best system in the literature and score a F1-score of 90.24\% on the open-source CVC-VideoClinicDB benchmark.}, language = {en} } @article{LandeckAlvarezIgarzabalUnruhetal.2022, author = {Landeck, Maximilian and Alvarez Igarz{\´a}bal, Federico and Unruh, Fabian and Habenicht, Hannah and Khoshnoud, Shiva and Wittmann, Marc and Lugrin, Jean-Luc and Latoschik, Marc Erich}, title = {Journey through a virtual tunnel: Simulated motion and its effects on the experience of time}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1059971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301519}, year = {2022}, abstract = {This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients' time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time.}, language = {en} } @article{WolfDoellingerMaletal.2022, author = {Wolf, Erik and D{\"o}llinger, Nina and Mal, David and Wenninger, Stephan and Bartl, Andrea and Botsch, Mario and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Does distance matter? Embodiment and perception of personalized avatars in relation to the self-observation distance in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.1031093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299415}, year = {2022}, abstract = {Virtual reality applications employing avatar embodiment typically use virtual mirrors to allow users to perceive their digital selves not only from a first-person but also from a holistic third-person perspective. However, due to distance-related biases such as the distance compression effect or a reduced relative rendering resolution, the self-observation distance (SOD) between the user and the virtual mirror might influence how users perceive their embodied avatar. Our article systematically investigates the effects of a short (1 m), middle (2.5 m), and far (4 m) SOD between users and mirror on the perception of their personalized and self-embodied avatars. The avatars were photorealistic reconstructed using state-of-the-art photogrammetric methods. Thirty participants repeatedly faced their real-time animated self-embodied avatars in each of the three SOD conditions, where they were repeatedly altered in their body weight, and participants rated the 1) sense of embodiment, 2) body weight perception, and 3) affective appraisal towards their avatar. We found that the different SODs are unlikely to influence any of our measures except for the perceived body weight estimation difficulty. Here, the participants perceived the difficulty significantly higher for the farthest SOD. We further found that the participants' self-esteem significantly impacted their ability to modify their avatar's body weight to their current body weight and that it positively correlated with the perceived attractiveness of the avatar. Additionally, the participants' concerns about their body shape affected how eerie they perceived their avatars. The participants' self-esteem and concerns about their body shape influenced the perceived body weight estimation difficulty. We conclude that the virtual mirror in embodiment scenarios can be freely placed and varied at a distance of one to four meters from the user without expecting major effects on the perception of the avatar.}, language = {en} } @article{ObremskiFriedrichHaaketal.2022, author = {Obremski, David and Friedrich, Paula and Haak, Nora and Schaper, Philipp and Lugrin, Birgit}, title = {The impact of mixed-cultural speech on the stereotypical perception of a virtual robot}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.983955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293531}, year = {2022}, abstract = {Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper's contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot.}, language = {en} } @article{HentschelKobsHotho2022, author = {Hentschel, Simon and Kobs, Konstantin and Hotho, Andreas}, title = {CLIP knows image aesthetics}, series = {Frontiers in Artificial Intelligence}, volume = {5}, journal = {Frontiers in Artificial Intelligence}, issn = {2624-8212}, doi = {10.3389/frai.2022.976235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297150}, year = {2022}, abstract = {Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks.}, language = {en} } @article{HarteltPuppe2022, author = {Hartelt, Alexander and Puppe, Frank}, title = {Optical Medieval Music Recognition using background knowledge}, series = {Algorithms}, volume = {15}, journal = {Algorithms}, number = {7}, issn = {1999-4893}, doi = {10.3390/a15070221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278756}, year = {2022}, abstract = {This paper deals with the effect of exploiting background knowledge for improving an OMR (Optical Music Recognition) deep learning pipeline for transcribing medieval, monophonic, handwritten music from the 12th-14th century, whose usage has been neglected in the literature. Various types of background knowledge about overlapping notes and text, clefs, graphical connections (neumes) and their implications on the position in staff of the notes were used and evaluated. Moreover, the effect of different encoder/decoder architectures and of different datasets for training a mixed model and for document-specific fine-tuning based on an extended OMR pipeline with an additional post-processing step were evaluated. The use of background models improves all metrics and in particular the melody accuracy rate (mAR), which is based on the insert, delete and replace operations necessary to convert the generated melody into the correct melody. When using a mixed model and evaluating on a different dataset, our best model achieves without fine-tuning and without post-processing a mAR of 90.4\%, which is raised by nearly 30\% to 93.2\% mAR using background knowledge. With additional fine-tuning, the contribution of post-processing is even greater: the basic mAR of 90.5\% is raised by more than 50\% to 95.8\% mAR.}, language = {en} } @article{GlemarecLugrinBosseretal.2022, author = {Gl{\´e}marec, Yann and Lugrin, Jean-Luc and Bosser, Anne-Gwenn and Buche, C{\´e}dric and Latoschik, Marc Erich}, title = {Controlling the stage: a high-level control system for virtual audiences in Virtual Reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.876433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284601}, year = {2022}, abstract = {This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker's performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker's performance, adjusting and allowing it to quickly react to the user's behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user's performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users.}, language = {en} } @article{SteinhaeusserOberdoerfervonMammenetal.2022, author = {Steinhaeusser, Sophia C. and Oberd{\"o}rfer, Sebastian and von Mammen, Sebastian and Latoschik, Marc Erich and Lugrin, Birgit}, title = {Joyful adventures and frightening places - designing emotion-inducing virtual environments}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.919163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284831}, year = {2022}, abstract = {Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games' reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{PrantlZeckBaueretal.2022, author = {Prantl, Thomas and Zeck, Timo and Bauer, Andre and Ten, Peter and Prantl, Dominik and Yahya, Ala Eddine Ben and Ifflaender, Lukas and Dmitrienko, Alexandra and Krupitzer, Christian and Kounev, Samuel}, title = {A Survey on Secure Group Communication Schemes With Focus on IoT Communication}, series = {IEEE Access}, volume = {10}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2022.3206451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300257}, pages = {99944 -- 99962}, year = {2022}, abstract = {A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes.}, language = {en} } @article{LohWamserPoigneeetal.2022, author = {Loh, Frank and Wamser, Florian and Poign{\´e}e, Fabian and Geißler, Stefan and Hoßfeld, Tobias}, title = {YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis}, series = {Scientific Data}, volume = {9}, journal = {Scientific Data}, number = {1}, doi = {10.1038/s41597-022-01418-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300240}, year = {2022}, abstract = {Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.}, language = {en} } @article{KrenzerMakowskiHekaloetal.2022, author = {Krenzer, Adrian and Makowski, Kevin and Hekalo, Amar and Fitting, Daniel and Troya, Joel and Zoller, Wolfram G. and Hann, Alexander and Puppe, Frank}, title = {Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists}, series = {BioMedical Engineering OnLine}, volume = {21}, journal = {BioMedical Engineering OnLine}, number = {1}, doi = {10.1186/s12938-022-01001-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300231}, year = {2022}, abstract = {Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object's annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source.}, language = {en} } @article{HelmerHottenrottRodemersetal.2022, author = {Helmer, Philipp and Hottenrott, Sebastian and Rodemers, Philipp and Leppich, Robert and Helwich, Maja and Pryss, R{\"u}diger and Kranke, Peter and Meybohm, Patrick and Winkler, Bernd E. and Sammeth, Michael}, title = {Accuracy and Systematic Biases of Heart Rate Measurements by Consumer-Grade Fitness Trackers in Postoperative Patients: Prospective Clinical Trial}, series = {Journal of Medical Internet Research}, volume = {24}, journal = {Journal of Medical Internet Research}, number = {12}, doi = {10.2196/42359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299679}, year = {2022}, abstract = {Background: Over the recent years, technological advances of wrist-worn fitness trackers heralded a new era in the continuous monitoring of vital signs. So far, these devices have primarily been used for sports. Objective: However, for using these technologies in health care, further validations of the measurement accuracy in hospitalized patients are essential but lacking to date. Methods: We conducted a prospective validation study with 201 patients after moderate to major surgery in a controlled setting to benchmark the accuracy of heart rate measurements in 4 consumer-grade fitness trackers (Apple Watch 7, Garmin Fenix 6 Pro, Withings ScanWatch, and Fitbit Sense) against the clinical gold standard (electrocardiography). Results: All devices exhibited high correlation (r≥0.95; P<.001) and concordance (rc≥0.94) coefficients, with a relative error as low as mean absolute percentage error <5\% based on 1630 valid measurements. We identified confounders significantly biasing the measurement accuracy, although not at clinically relevant levels (mean absolute error<5 beats per minute). Conclusions: Consumer-grade fitness trackers appear promising in hospitalized patients for monitoring heart rate.}, language = {en} } @phdthesis{Eismann2023, author = {Eismann, Simon}, title = {Performance Engineering of Serverless Applications and Platforms}, doi = {10.25972/OPUS-30313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303134}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Serverless computing is an emerging cloud computing paradigm that offers a highlevel application programming model with utilization-based billing. It enables the deployment of cloud applications without managing the underlying resources or worrying about other operational aspects. Function-as-a-Service (FaaS) platforms implement serverless computing by allowing developers to execute code on-demand in response to events with continuous scaling while having to pay only for the time used with sub-second metering. Cloud providers have further introduced many fully managed services for databases, messaging buses, and storage that also implement a serverless computing model. Applications composed of these fully managed services and FaaS functions are quickly gaining popularity in both industry and in academia. However, due to this rapid adoption, much information surrounding serverless computing is inconsistent and often outdated as the serverless paradigm evolves. This makes the performance engineering of serverless applications and platforms challenging, as there are many open questions, such as: What types of applications is serverless computing well suited for, and what are its limitations? How should serverless applications be designed, configured, and implemented? Which design decisions impact the performance properties of serverless platforms and how can they be optimized? These and many other open questions can be traced back to an inconsistent understanding of serverless applications and platforms, which could present a major roadblock in the adoption of serverless computing. In this thesis, we address the lack of performance knowledge surrounding serverless applications and platforms from multiple angles: we conduct empirical studies to further the understanding of serverless applications and platforms, we introduce automated optimization methods that simplify the operation of serverless applications, and we enable the analysis of design tradeoffs of serverless platforms by extending white-box performance modeling.}, subject = {Leistungsbewertung}, language = {en} } @article{BraeuerBurchardtMunkeltBleieretal.2022, author = {Br{\"a}uer-Burchardt, Christian and Munkelt, Christoph and Bleier, Michael and Heinze, Matthias and Gebhart, Ingo and K{\"u}hmstedt, Peter and Notni, Gunther}, title = {A new sensor system for accurate 3D surface measurements and modeling of underwater objects}, series = {Applied Sciences}, volume = {12}, journal = {Applied Sciences}, number = {9}, issn = {2076-3417}, doi = {10.3390/app12094139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270792}, year = {2022}, abstract = {A new underwater 3D scanning device based on structured illumination and designed for continuous capture of object data in motion for deep sea inspection applications is introduced. The sensor permanently captures 3D data of the inspected surface and generates a 3D surface model in real time. Sensor velocities up to 0.7 m/s are directly compensated while capturing camera images for the 3D reconstruction pipeline. The accuracy results of static measurements of special specimens in a water basin with clear water show the high accuracy potential of the scanner in the sub-millimeter range. Measurement examples with a moving sensor show the significance of the proposed motion compensation and the ability to generate a 3D model by merging individual scans. Future application tests in offshore environments will show the practical potential of the sensor for the desired inspection tasks.}, language = {en} } @article{LohMehlingHossfeld2022, author = {Loh, Frank and Mehling, Noah and Hoßfeld, Tobias}, title = {Towards LoRaWAN without data loss: studying the performance of different channel access approaches}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {2}, issn = {1424-8220}, doi = {10.3390/s22020691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302418}, year = {2022}, abstract = {The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN.}, language = {en} } @phdthesis{Nogatz2023, author = {Nogatz, Falco}, title = {Defining and Implementing Domain-Specific Languages with Prolog}, doi = {10.25972/OPUS-30187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The landscape of today's programming languages is manifold. With the diversity of applications, the difficulty of adequately addressing and specifying the used programs increases. This often leads to newly designed and implemented domain-specific languages. They enable domain experts to express knowledge in their preferred format, resulting in more readable and concise programs. Due to its flexible and declarative syntax without reserved keywords, the logic programming language Prolog is particularly suitable for defining and embedding domain-specific languages. This thesis addresses the questions and challenges that arise when integrating domain-specific languages into Prolog. We compare the two approaches to define them either externally or internally, and provide assisting tools for each. The grammar of a formal language is usually defined in the extended Backus-Naur form. In this work, we handle this formalism as a domain-specific language in Prolog, and define term expansions that allow to translate it into equivalent definite clause grammars. We present the package library(dcg4pt) for SWI-Prolog, which enriches them by an additional argument to automatically process the term's corresponding parse tree. To simplify the work with definite clause grammars, we visualise their application by a web-based tracer. The external integration of domain-specific languages requires the programmer to keep the grammar, parser, and interpreter in sync. In many cases, domain-specific languages can instead be directly embedded into Prolog by providing appropriate operator definitions. In addition, we propose syntactic extensions for Prolog to expand its expressiveness, for instance to state logic formulas with their connectives verbatim. This allows to use all tools that were originally written for Prolog, for instance code linters and editors with syntax highlighting. We present the package library(plammar), a standard-compliant parser for Prolog source code, written in Prolog. It is able to automatically infer from example sentences the required operator definitions with their classes and precedences as well as the required Prolog language extensions. As a result, we can automatically answer the question: Is it possible to model these example sentences as valid Prolog clauses, and how? We discuss and apply the two approaches to internal and external integrations for several domain-specific languages, namely the extended Backus-Naur form, GraphQL, XPath, and a controlled natural language to represent expert rules in if-then form. The created toolchain with library(dcg4pt) and library(plammar) yields new application opportunities for static Prolog source code analysis, which we also present.}, subject = {PROLOG }, language = {en} } @article{Halbig Babu Gatter etal.2022, author = {Halbig , Andreas and Babu , Sooraj K. and Gatter , Shirin and Latoschik , Marc Erich and Brukamp, Kirsten and von Mammen , Sebastian}, title = {Opportunities and challenges of Virtual Reality in healthcare - a domain experts inquiry}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.837616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284752}, year = {2022}, abstract = {In recent years, the applications and accessibility of Virtual Reality (VR) for the healthcare sector have continued to grow. However, so far, most VR applications are only relevant in research settings. Information about what healthcare professionals would need to independently integrate VR applications into their daily working routines is missing. The actual needs and concerns of the people who work in the healthcare sector are often disregarded in the development of VR applications, even though they are the ones who are supposed to use them in practice. By means of this study, we systematically involve health professionals in the development process of VR applications. In particular, we conducted an online survey with 102 healthcare professionals based on a video prototype which demonstrates a software platform that allows them to create and utilise VR experiences on their own. For this study, we adapted and extended the Technology Acceptance Model (TAM). The survey focused on the perceived usefulness and the ease of use of such a platform, as well as the attitude and ethical concerns the users might have. The results show a generally positive attitude toward such a software platform. The users can imagine various use cases in different health domains. However, the perceived usefulness is tied to the actual ease of use of the platform and sufficient support for learning and working with the platform. In the discussion, we explain how these results can be generalized to facilitate the integration of VR in healthcare practice.}, language = {en} } @article{DonnermannSchaperLugrin2022, author = {Donnermann, Melissa and Schaper, Philipp and Lugrin, Birgit}, title = {Social robots in applied settings: a long-term study on adaptive robotic tutors in higher education}, series = {Frontiers in Robotics and AI}, volume = {9}, journal = {Frontiers in Robotics and AI}, issn = {2296-9144}, doi = {10.3389/frobt.2022.831633}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266012}, year = {2022}, abstract = {Learning in higher education scenarios requires self-directed learning and the challenging task of self-motivation while individual support is rare. The integration of social robots to support learners has already shown promise to benefit the learning process in this area. In this paper, we focus on the applicability of an adaptive robotic tutor in a university setting. To this end, we conducted a long-term field study implementing an adaptive robotic tutor to support students with exam preparation over three sessions during one semester. In a mixed design, we compared the effect of an adaptive tutor to a control condition across all learning sessions. With the aim to benefit not only motivation but also academic success and the learning experience in general, we draw from research in adaptive tutoring, social robots in education, as well as our own prior work in this field. Our results show that opting in for the robotic tutoring is beneficial for students. We found significant subjective knowledge gain and increases in intrinsic motivation regarding the content of the course in general. Finally, participation resulted in a significantly better exam grade compared to students not participating. However, the extended adaptivity of the robotic tutor in the experimental condition did not seem to enhance learning, as we found no significant differences compared to a non-adaptive version of the robot.}, language = {en} } @article{OberdoerferSchraudtLatoschik2022, author = {Oberd{\"o}rfer, Sebastian and Schraudt, David and Latoschik, Marc Erich}, title = {Embodied gambling — investigating the influence of level of embodiment, avatar appearance, and virtual environment design on an online VR slot machine}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.828553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284662}, year = {2022}, abstract = {Slot machines are one of the most played games by players suffering from gambling disorder. New technologies like immersive Virtual Reality (VR) offer more possibilities to exploit erroneous beliefs in the context of gambling. Recent research indicates a higher risk potential when playing a slot machine in VR than on desktop. To continue this investigation, we evaluate the effects of providing different degrees of embodiment, i.e., minimal and full embodiment. The avatars used for the full embodiment further differ in their appearance, i.e., they elicit a high or a low socio-economic status. The virtual environment (VE) design can cause a potential influence on the overall gambling behavior. Thus, we also embed the slot machine in two different VEs that differ in their emotional design: a colorful underwater playground environment and a virtual counterpart of our lab. These design considerations resulted in four different versions of the same VR slot machine: 1) full embodiment with high socio-economic status, 2) full embodiment with low socio-economic status, 3) minimal embodiment playground VE, and 4) minimal embodiment laboratory VE. Both full embodiment versions also used the playground VE. We determine the risk potential by logging gambling frequency as well as stake size, and measuring harm-inducing factors, i.e., dissociation, urge to gamble, dark flow, and illusion of control, using questionnaires. Following a between groups experimental design, 82 participants played for 20 game rounds one of the four versions. We recruited our sample from the students enrolled at the University of W{\"u}rzburg. Our safety protocol ensured that only participants without any recent gambling activity took part in the experiment. In this comparative user study, we found no effect of the embodiment nor VE design on neither the gambling frequency, stake sizes, nor risk potential. However, our results provide further support for the hypothesis of the higher visual angle on gambling stimuli and hence the increased emotional response being the true cause for the higher risk potential.}, language = {en} } @article{LatoschikWienrich2022, author = {Latoschik, Marc Erich and Wienrich, Carolin}, title = {Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.694433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284787}, year = {2022}, abstract = {Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model's so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.}, language = {en} } @phdthesis{Schloer2022, author = {Schl{\"o}r, Daniel}, title = {Detecting Anomalies in Transaction Data}, doi = {10.25972/OPUS-29856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Detecting anomalies in transaction data is an important task with a high potential to avoid financial loss due to irregularities deliberately or inadvertently carried out, such as credit card fraud, occupational fraud in companies or ordering and accounting errors. With ongoing digitization of our world, data-driven approaches, including machine learning, can draw benefit from data with less manual effort and feature engineering. A large variety of machine learning-based anomaly detection methods approach this by learning a precise model of normality from which anomalies can be distinguished. Modeling normality in transactional data, however, requires to capture distributions and dependencies within the data precisely with special attention to numerical dependencies such as quantities, prices or amounts. To implicitly model numerical dependencies, Neural Arithmetic Logic Units have been proposed as neural architecture. In practice, however, these have stability and precision issues. Therefore, we first develop an improved neural network architecture, iNALU, which is designed to better model numerical dependencies as found in transaction data. We compare this architecture to the previous approach and show in several experiments of varying complexity that our novel architecture provides better precision and stability. We integrate this architecture into two generative neural network models adapted for transaction data and investigate how well normal behavior is modeled. We show that both architectures can successfully model normal transaction data, with our neural architecture improving generative performance for one model. Since categorical and numerical variables are common in transaction data, but many machine learning methods only process numerical representations, we explore different representation learning techniques to transform categorical transaction data into dense numerical vectors. We extend this approach by proposing an outlier-aware discretization, thus incorporating numerical attributes into the computation of categorical embeddings, and investigate latent spaces, as well as quantitative performance for anomaly detection. Next, we evaluate different scenarios for anomaly detection on transaction data. We extend our iNALU architecture to a neural layer that can model both numerical and non-numerical dependencies and evaluate it in a supervised and one-class setting. We investigate the stability and generalizability of our approach and show that it outperforms a variety of models in the balanced supervised setting and performs comparably in the one-class setting. Finally, we evaluate three approaches to using a generative model as an anomaly detector and compare the anomaly detection performance.}, subject = {Anomalieerkennung}, language = {en} } @phdthesis{Stauffert2022, author = {Stauffert, Jan-Philipp}, title = {Temporal Confounding Effects in Virtual and Extended Reality Systems}, doi = {10.25972/OPUS-29060}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Latency is an inherent problem of computing systems. Each computation takes time until the result is available. Virtual reality systems use elaborated computer resources to create virtual experiences. The latency of those systems is often ignored or assumed as small enough to provide a good experience. This cumulative thesis is comprised of published peer reviewed research papers exploring the behaviour and effects of latency. Contrary to the common description of time invariant latency, latency is shown to fluctuate. Few other researchers have looked into this time variant behaviour. This thesis explores time variant latency with a focus on randomly occurring latency spikes. Latency spikes are observed both for small algorithms and as end to end latency in complete virtual reality systems. Most latency measurements gather close to the mean latency with potentially multiple smaller clusters of larger latency values and rare extreme outliers. The latency behaviour differs for different implementations of an algorithm. Operating system schedulers and programming language environments such as garbage collectors contribute to the overall latency behaviour. The thesis demonstrates these influences on the example of different implementations of message passing. The plethora of latency sources result in an unpredictable latency behaviour. Measuring and reporting it in scientific experiments is important. This thesis describes established approaches to measuring latency and proposes an enhanced setup to gather detailed information. The thesis proposes to dissect the measured data with a stacked z-outlier-test to separate the clusters of latency measurements for better reporting. Latency in virtual reality applications can degrade the experience in multiple ways. The thesis focuses on cybersickness as a major detrimental effect. An approach to simulate time variant latency is proposed to make latency available as an independent variable in experiments to understand latency's effects. An experiment with modified latency shows that latency spikes can contribute to cybersickness. A review of related research shows that different time invariant latency behaviour also contributes to cybersickness.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @article{DoellingerWolfMaletal.2022, author = {D{\"o}llinger, Nina and Wolf, Erik and Mal, David and Wenninger, Stephan and Botsch, Mario and Latoschik, Marc Erich and Wienrich, Carolin}, title = {Resize Me! Exploring the user experience of embodied realistic modulatable avatars for body image intervention in virtual reality}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.935449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292940}, year = {2022}, abstract = {Obesity is a serious disease that can affect both physical and psychological well-being. Due to weight stigmatization, many affected individuals suffer from body image disturbances whereby they perceive their body in a distorted way, evaluate it negatively, or neglect it. Beyond established interventions such as mirror exposure, recent advancements aim to complement body image treatments by the embodiment of visually altered virtual bodies in virtual reality (VR). We present a high-fidelity prototype of an advanced VR system that allows users to embody a rapidly generated personalized, photorealistic avatar and to realistically modulate its body weight in real-time within a carefully designed virtual environment. In a formative multi-method approach, a total of 12 participants rated the general user experience (UX) of our system during body scan and VR experience using semi-structured qualitative interviews and multiple quantitative UX measures. Using body weight modification tasks, we further compared three different interaction methods for real-time body weight modification and measured our system's impact on the body image relevant measures body awareness and body weight perception. From the feedback received, demonstrating an already solid UX of our overall system and providing constructive input for further improvement, we derived a set of design guidelines to guide future development and evaluation processes of systems supporting body image interventions.}, language = {en} } @article{HirthSeufertLangeetal.2021, author = {Hirth, Matthias and Seufert, Michael and Lange, Stanislav and Meixner, Markus and Tran-Gia, Phuoc}, title = {Performance evaluation of hybrid crowdsensing and fixed sensor systems for event detection in urban environments}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, issn = {1424-8220}, doi = {10.3390/s21175880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245245}, year = {2021}, abstract = {Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed data and provide sensor values where no crowdsensing data are typically available. In this work, we first used a simulation study to analyze a simple crowdsensing system concerning the detection performance of spatial events to highlight the potential and limitations of a pure crowdsourcing system. The results indicate that even if only a small share of inhabitants participate in crowdsensing, events that have locations correlated with the population density can be easily and quickly detected using such a system. On the contrary, events with uniformly randomly distributed locations are much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario.}, language = {en} } @article{DumicBjeloperaNuechter2021, author = {Dumic, Emil and Bjelopera, Anamaria and N{\"u}chter, Andreas}, title = {Dynamic point cloud compression based on projections, surface reconstruction and video compression}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252231}, year = {2021}, abstract = {In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections.}, language = {en} } @phdthesis{Dorin2022, author = {Dorin, Michael}, title = {The Relationship Between Software Complicacy and Software Reliability}, doi = {10.25972/OPUS-28308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {An enduring engineering problem is the creation of unreliable software leading to unreliable systems. One reason for this is source code is written in a complicated manner making it too hard for humans to review and understand. Complicated code leads to other issues beyond dependability, such as expanded development efforts and ongoing difficulties with maintenance, ultimately costing developers and users more money. There are many ideas regarding where blame lies in the reation of buggy and unreliable systems. One prevalent idea is the selected life cycle model is to blame. The oft-maligned "waterfall" life cycle model is a particularly popular recipient of blame. In response, many organizations changed their life cycle model in hopes of addressing these issues. Agile life cycle models have become very popular, and they promote communication between team members and end users. In theory, this communication leads to fewer misunderstandings and should lead to less complicated and more reliable code. Changing the life cycle model can indeed address communications ssues, which can resolve many problems with understanding requirements. However, most life cycle models do not specifically address coding practices or software architecture. Since lifecycle models do not address the structure of the code, they are often ineffective at addressing problems related to code complicacy. This dissertation answers several research questions concerning software complicacy, beginning with an investigation of traditional metrics and static analysis to evaluate their usefulness as measurement tools. This dissertation also establishes a new concept in applied linguistics by creating a measurement of software complicacy based on linguistic economy. Linguistic economy describes the efficiencies of speech, and this thesis shows the applicability of linguistic economy to software. Embedded in each topic is a discussion of the ramifications of overly complicated software, including the relationship of complicacy to software faults. Image recognition using machine learning is also investigated as a potential method of identifying problematic source code. The central part of the work focuses on analyzing the source code of hundreds of different projects from different areas. A static analysis was performed on the source code of each project, and traditional software metrics were calculated. Programs were also analyzed using techniques developed by linguists to measure expression and statement complicacy and identifier complicacy. Professional software engineers were also directly surveyed to understand mainstream perspectives. This work shows it is possible to use traditional metrics as indicators of potential project bugginess. This work also discovered it is possible to use image recognition to identify problematic pieces of source code. Finally, this work discovered it is possible to use linguistic methods to determine which statements and expressions are least desirable and more complicated for programmers. This work's principle conclusion is that there are multiple ways to discover traits indicating a project or a piece of source code has characteristics of being buggy. Traditional metrics and static analysis can be used to gain some understanding of software complicacy and bugginess potential. Linguistic economy demonstrates a new tool for measuring software complicacy, and machine learning can predict where bugs may lie in source code. The significant implication of this work is developers can recognize when a project is becoming buggy and take practical steps to avoid creating buggy projects.}, subject = {Softwareentwicklung}, language = {en} } @techreport{ElsayedRizk2022, type = {Working Paper}, author = {Elsayed, Karim and Rizk, Amr}, title = {Response Times in Time-to-Live Caching Hierarchies under Random Network Delays}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280843}, pages = {4}, year = {2022}, abstract = {Time-to-Live (TTL) caches decouple the occupancy of objects in cache through object-specific validity timers. Stateof- the art techniques provide exact methods for the calculation of object-specific hit probabilities given entire cache hierarchies with random inter-cache network delays. The system hit probability is a provider-centric metric as it relates to the origin offload, i.e., the decrease in the number of requests that are served by the content origin server. In this paper we consider a user-centric metric, i.e., the response time, which is shown to be structurally different from the system hit probability. Equipped with the state-of-theart exact modeling technique using Markov-arrival processes we derive expressions for the expected object response time and pave a way for its optimization under network delays.}, subject = {Datennetz}, language = {en} } @techreport{GallenmuellerScholzStubbeetal.2022, type = {Working Paper}, author = {Gallenm{\"u}ller, Sebastian and Scholz, Dominik and Stubbe, Henning and Hauser, Eric and Carle, Georg}, title = {Reproducible by Design: Network Experiments with pos}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280834}, pages = {4}, year = {2022}, abstract = {In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment.}, subject = {Datennetz}, language = {en} } @techreport{LohGeisslerHossfeld2022, type = {Working Paper}, author = {Loh, Frank and Geißler, Stefan and Hoßfeld, Tobias}, title = {LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280829}, pages = {4}, year = {2022}, abstract = {The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed.}, subject = {Datennetz}, language = {en} } @techreport{RieglerKayal2022, type = {Working Paper}, author = {Riegler, Clemens and Kayal, Hakan}, title = {VELEX: Venus Lightning Experiment}, doi = {10.25972/OPUS-28248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282481}, pages = {6}, year = {2022}, abstract = {Lightning has fascinated humanity since the beginning of our existence. Different types of lightning like sprites and blue jets were discovered, and many more are theorized. However, it is very likely that these phenomena are not exclusive to our home planet. Venus's dense and active atmosphere is a place where lightning is to be expected. Missions like Venera, Pioneer, and Galileo have carried instruments to measure electromagnetic activity. These measurements have indeed delivered results. However, these results are not clear. They could be explained by other effects like cosmic rays, plasma noise, or spacecraft noise. Furthermore, these lightning seem different from those we know from our home planet. In order to tackle these issues, a different approach to measurement is proposed. When multiple devices in different spacecraft or locations can measure the same atmospheric discharge, most other explanations become increasingly less likely. Thus, the suggested instrument and method of VELEX incorporates multiple spacecraft. With this approach, the question about the existence of lightning on Venus could be settled.}, language = {en} } @techreport{RieglerWernerKayal2022, type = {Working Paper}, author = {Riegler, Clemens and Werner, Lennart and Kayal, Hakan}, title = {MAPLE: Marsian Autorotation Probe Lander Experiment}, doi = {10.25972/OPUS-28239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282390}, pages = {7}, year = {2022}, abstract = {The first step towards aerial planetary exploration has been made. Ingenuity shows extremely promising results, and new missions are already underway. Rotorcraft are capable of flight. This capability could be utilized to support the last stages of Entry, Descent, and Landing. Thus, mass and complexity could be scaled down. Autorotation is one method of descent. It describes unpowered descent and landing, typically performed by helicopters in case of an engine failure. MAPLE is suggested to test these procedures and understand autorotation on other planets. In this series of experiments, the Ingenuity helicopter is utilized. Ingenuity would autorotate a "mid-air-landing" before continuing with normal flight. Ultimately, the collected data shall help to understand autorotation on Mars and its utilization for interplanetary exploration.}, language = {en} } @techreport{OdhahGrassKraemer2022, type = {Working Paper}, author = {Odhah, Najib and Grass, Eckhard and Kraemer, Rolf}, title = {Effective Rate of URLLC with Short Block-Length Information Theory}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280859}, pages = {4}, year = {2022}, abstract = {Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon's formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed.}, subject = {Datennetz}, language = {en} } @techreport{VomhoffGeisslerHossfeld2022, type = {Working Paper}, author = {Vomhoff, Viktoria and Geißler, Stefan and Hoßfeld, Tobias}, title = {Identification of Signaling Patterns in Mobile IoT Signaling Traffic}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280819}, pages = {4}, year = {2022}, abstract = {We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection.}, subject = {Datennetz}, language = {en} } @techreport{RaffeckGeisslerHossfeld2022, type = {Working Paper}, author = {Raffeck, Simon and Geißler, Stefan and Hoßfeld, Tobias}, title = {DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280809}, pages = {4}, year = {2022}, abstract = {This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices.}, subject = {Datennetz}, language = {en} }