@article{ZhangVanCrombruggenHoltappelsetal.2014, author = {Zhang, Nan and Van Crombruggen, Koen and Holtappels, Gabriele and Lan, Feng and Katotomichelakis, Michail and Zhang, Luo and H{\"o}gger, Petra and Bachert, Claus}, title = {Suppression of Cytokine Release by Fluticasone Furoate vs. Mometasone Furoate in Human Nasal Tissue Ex-Vivo}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {4}, doi = {10.1371/journal.pone.0093754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116779}, pages = {e93754}, year = {2014}, abstract = {Background: Topical glucocorticosteroids are the first line therapy for airway inflammation. Modern compounds with higher efficacy have been developed, but head-to-head comparison studies are sparse. Objective: To compare the activity of two intranasal glucocorticoids, fluticasone furoate (FF) and mometasone furoate (MF) with respect to the inhibition of T helper (Th)1, Th2 and Th17 cytokine release in airway mucosa. Methods: We used an ex-vivo human nasal mucosal tissue model and employed pre-and post-Staphylococcus aureus enterotoxin B (SEB)-challenge incubations with various time intervals and drug concentrations to mimic typical clinical situations of preventive or therapeutic use. Results: At a fixed concentration of 10(-10) M, FF had significantly higher suppressive effects on interferon (IFN)-gamma,interleukin (IL)-2 and IL-17 release, but not IL-5 or tumor necrosis factor (TNF)-alpha, vs. MF. While the maximal suppressive activity was maintained when FF was added before or after tissue stimulation, the cytokine suppression capacity of MF appeared to be compromised when SEB-induced cell activation preceded the addition of the drug. In a pre-challenge incubation setting with removal of excess drug concentrations, MF approached inhibition of IL-5 and TNF-alpha after 6 and 24 hours while FF maximally blocked the release of these cytokines right after pre-incubation. Furthermore, FF suppressed a wider range of T helper cytokines compared to MF. Conclusion: The study demonstrates the potential of our human mucosal model and shows marked differences in the ability to suppress the release of various cytokines in pre-and post-challenge settings between FF and MF mimicking typical clinical situations of preventive or therapeutic use.}, language = {en} } @article{LiedertRoentgenSchinkeetal.2014, author = {Liedert, Astrid and R{\"o}ntgen, Viktoria and Schinke, Thorsten and Benisch, Peggy and Ebert, Regina and Jakob, Franz and Klein-Hitpass, Ludger and Lennerz, Jochen K. and Amling, Michael and Ignatius, Anita}, title = {Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0103250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115782}, pages = {e103250}, year = {2014}, abstract = {The canonical Wnt/beta-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5(-/-)) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5(-/-) mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5(-/-) mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active beta-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.}, language = {en} } @article{PishvaDrukkerViechtbaueretal.2014, author = {Pishva, Ehsan and Drukker, Marjan and Viechtbauer, Wolfgang and Decoster, Jeroen and Collip, Dina and van Winkel, Ruud and Wichers, Marieke and Jacobs, Nele and Thiery, Evert and Derom, Catherine and Geschwind, Nicole and van den Hove, Daniel and Lataster, Tineke and Myin-Germeys, Inez and van Os, Jim and Rutten, Bart P. F. and Kenis, Gunter}, title = {Epigenetic Genes and Emotional Reactivity to Daily Life Events: A Multi-Step Gene-Environment Interaction Study}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115956}, pages = {e100935}, year = {2014}, abstract = {Recent human and animal studies suggest that epigenetic mechanisms mediate the impact of environment on development of mental disorders. Therefore, we hypothesized that polymorphisms in epigenetic-regulatory genes impact stress-induced emotional changes. A multi-step, multi-sample gene-environment interaction analysis was conducted to test whether 31 single nucleotide polymorphisms (SNPs) in epigenetic-regulatory genes, i.e. three DNA methyltransferase genes DNMT1, DNMT3A, DNMT3B, and methylenetetrahydrofolate reductase (MTHFR), moderate emotional responses to stressful and pleasant stimuli in daily life as measured by Experience Sampling Methodology (ESM). In the first step, main and interactive effects were tested in a sample of 112 healthy individuals. Significant associations in this discovery sample were then investigated in a population-based sample of 434 individuals for replication. SNPs showing significant effects in both the discovery and replication samples were subsequently tested in three other samples of: (i) 85 unaffected siblings of patients with psychosis, (ii) 110 patients with psychotic disorders, and iii) 126 patients with a history of major depressive disorder. Multilevel linear regression analyses showed no significant association between SNPs and negative affect or positive affect. No SNPs moderated the effect of pleasant stimuli on positive affect. Three SNPs of DNMT3A (rs11683424, rs1465764, rs1465825) and 1 SNP of MTHFR (rs1801131) moderated the effect of stressful events on negative affect. Only rs11683424 of DNMT3A showed consistent directions of effect in the majority of the 5 samples. These data provide the first evidence that emotional responses to daily life stressors may be moderated by genetic variation in the genes involved in the epigenetic machinery.}, language = {en} } @article{PiteauPapatheodorouSchwanetal.2014, author = {Piteau, Marianne and Papatheodorou, Panagiotis and Schwan, Carsten and Schlosser, Andreas and Aktories, Klaus and Schmidt, Gudula}, title = {Lu/BCAM Adhesion Glycoprotein Is a Receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1)}, series = {PLoS Pathogens}, volume = {10}, journal = {PLoS Pathogens}, number = {1}, issn = {1553-7374}, doi = {10.1371/journal.ppat.1003884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117987}, pages = {e1003884}, year = {2014}, abstract = {The Cytotoxic Necrotizing Factor 1 (CNF1) is a protein toxin which is a major virulence factor of pathogenic Escherichia coli strains. Here, we identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as cellular receptor for CNF1 by co-precipitation of cell surface molecules with tagged toxin. The CNF1-Lu/BCAM interaction was verified by direct protein-protein interaction analysis and competition studies. These studies revealed amino acids 720 to 1014 of CNF1 as the binding site for Lu/BCAM. We suggest two cell interaction sites in CNF1: first the N-terminus, which binds to p37LRP as postulated before. Binding of CNF1 to p37LRP seems to be crucial for the toxin's action. However, it is not sufficient for the binding of CNF1 to the cell surface. A region directly adjacent to the catalytic domain is a high affinity interaction site for Lu/BCAM. We found Lu/BCAM to be essential for the binding of CNF1 to cells. Cells deficient in Lu/BCAM but expressing p37LRP could not bind labeled CNF1. Therefore, we conclude that LRP and Lu/BCAM are both required for toxin action but with different functions. Author Summary We study a crucial virulence factor produced by pathogenic Escherichia coli strains, the Cytotoxic Necrotizing Factor 1 (CNF1). More than 80\% of urinary tract infections (UTIs), which are counted among the most common bacterial infections of humans, are caused by Uropathogenic Escherichia coli (UPEC) strains. We and others elucidated the molecular mechanism of the E. coli toxin CNF1. It constitutively activates Rho GTPases by a direct covalent modification. The toxin enters mammalian cells by receptor-mediated endocytosis. Here, we identified the protein receptor for CNF1 by co-precipitation of cell surface molecules with the tagged toxin and subsequent Maldi-TOF analysis. We identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as receptor for CNF1 and located its interaction site to the C-terminal part of the toxin. We performed direct protein-protein interaction analysis and competition studies. Moreover, cells deficient in Lu/BCAM could not bind labeled CNF1. The identification of a toxin's cellular receptor and receptor binding region is an important task for understanding the pathogenic function of the toxin and, moreover, to make the toxin accessible for its use as a cellbiological and pharmacological tool, for example for the generation of immunotoxins.}, language = {en} }